1,943 research outputs found
Inhomogeneity of dusty crystals and plasma diagnostics
Real dusty crystals are inhomogeneous due to the presence of external forces. We suggest approximations for calculations of different types of inhomogeneous DC (chain and DC with a few slabs) in the equilibrium state. The results are in a good agreement with experimental results and can be used as an effective diagnostic method for many dusty systems
Random walk approach to the d-dimensional disordered Lorentz gas
A correlated random walk approach to diffusion is applied to the disordered
nonoverlapping Lorentz gas. By invoking the Lu-Torquato theory for chord-length
distributions in random media [J. Chem. Phys. 98, 6472 (1993)], an analytic
expression for the diffusion constant in arbitrary number of dimensions d is
obtained. The result corresponds to an Enskog-like correction to the Boltzmann
prediction, being exact in the dilute limit, and better or nearly exact in
comparison to renormalized kinetic theory predictions for all allowed densities
in d=2,3. Extensive numerical simulations were also performed to elucidate the
role of the approximations involved.Comment: 5 pages, 5 figure
On anomalous diffusion in a plasma in velocity space
The problem of anomalous diffusion in momentum space is considered for
plasma-like systems on the basis of a new collision integral, which is
appropriate for consideration of the probability transition function (PTF) with
long tails in momentum space. The generalized Fokker-Planck equation for
description of diffusion (in momentum space) of particles (ions, grains etc.)
in a stochastic system of light particles (electrons, or electrons and ions,
respectively) is applied to the evolution of the momentum particle distribution
in a plasma. In a plasma the developed approach is also applicable to the
diffusion of particles with an arbitrary mass relation, due to the small
characteristic momentum transfer. The cases of an exponentially decreasing in
momentum space (including the Boltzmann-like) kernel in the PT-function, as
well as the more general kernels, which create the anomalous diffusion in
velocity space due to the long tail in the PT-function, are considered.
Effective friction and diffusion coefficients for plasma-like systems are
found.Comment: 18 pages, no figure
Harmonic lattice behavior of two-dimensional colloidal crystals
Using positional data from video-microscopy and applying the equipartition
theorem for harmonic Hamiltonians, we determine the wave-vector-dependent
normal mode spring constants of a two-dimensional colloidal model crystal and
compare the measured band-structure to predictions of the harmonic lattice
theory. We find good agreement for both the transversal and the longitudinal
mode. For , the measured spring constants are consistent with the
elastic moduli of the crystal.Comment: 4 pages, 3 figures, submitte
Static correlations in the ordered colloidal systems
The macroion-macroion correlation function and structure factor are studied within the Ornstein-Zernike (OZ) integral equation closed by hypernetted-chain approximation using the method of critical modes. Developing the results which have recently been received i
Static correlations in the ordered colloidal systems
The macroion-macroion correlation function and structure factor are studied within the Ornstein-Zernike (OZ) integral equation closed by hypernetted-chain approximation using the method of critical modes. Developing the results which have recently been received i
- …