84 research outputs found

    Solid solution decomposition and Guinier-Preston zone formation in Al-Cu alloys: A kinetic theory with anisotropic interactions

    Full text link
    Using methods of statistical kinetic theory parametrized with first-principles interatomic interactions that include chemical and strain contributions, we investigated the kinetics of decomposition and microstructure formation in Al-Cu alloys as a function of temperature and alloy concentration. We show that the decomposition of the solid solution forming platelets of copper, known as Guinier-Preston (GP) zones, includes several stages and that the transition from GP1 to GP2 zones is determined mainly by kinetic factors. With increasing temperature, the model predicts a gradual transition from platelet-like precipitates to equiaxial ones and at intermediate temperatures both precipitate morphologies may coexist.Comment: 9 pages, 8 figure

    Screened Coulomb interactions in metallic alloys: II Screening beyond the single-site and atomic sphere approximations

    Get PDF
    A quantitative description of the configurational part of the total energy of metallic alloys with substantial atomic size difference cannot be achieved in the atomic sphere approximation: It needs to be corrected at least for the multipole moment interactions in the Madelung part of the one-electron potential and energy. In the case of a random alloy such interactions can be accounted for only by lifting the atomic sphere and single-site approximations, in order to include the polarization due to local environment effects. Nevertheless a simple parameterization of the screened Coulomb interactions for the ordinary single-site methods, including the generalized perturbation method, is still possible. We obtained such a parameterization for bulk and surface NiPt alloys, which allows one to obtain quantitatively accurate effective interactions in this system.Comment: 24 pages, 2 figure

    Point-charge electrostatics in disordered alloys

    Full text link
    A simple analytic model of point-ion electrostatics has been previously proposed in which the magnitude of the net charge q_i on each atom in an ordered or random alloy depends linearly on the number N_i^(1) of unlike neighbors in its first coordination shell. Point charges extracted from recent large supercell (256-432 atom) local density approximation (LDA) calculations of Cu-Zn random alloys now enable an assessment of the physical validity and accuracy of the simple model. We find that this model accurately describes (i) the trends in q_i vs. N_i^(1), particularly for fcc alloys, (ii) the magnitudes of total electrostatic energies in random alloys, (iii) the relationships between constant-occupation-averaged charges and Coulomb shifts (i.e., the average over all sites occupied by either AA or BB atoms) in the random alloy, and (iv) the linear relation between the site charge q_i and the constant- charge-averaged Coulomb shift (i.e., the average over all sites with the same charge) for fcc alloys. However, for bcc alloys the fluctuations predicted by the model in the q_i vs. V_i relation exceed those found in the LDA supercell calculations. We find that (a) the fluctuations present in the model have a vanishing contribution to the electrostatic energy. (b) Generalizing the model to include a dependence of the charge on the atoms in the first three (two) shells in bcc (fcc) - rather than the first shell only - removes the fluctuations, in complete agreement with the LDA data. We also demonstrate an efficient way to extract charge transfer parameters of the generalized model from LDA calculations on small unit cells.Comment: 15 pages, ReVTeX galley format, 7 eps figures embedded using psfig, to be published in Phys. Rev.

    Anomalously large oxygen-ordering contribution to the thermal expansion of untwinned YBa2Cu3O6.95 single crystals: a glass-like transition near room temperature

    Full text link
    We present high-resolution capacitance dilatometry studies from 5 - 500 K of untwinned YBa2Cu3Ox (Y123) single crystals for x ~ 6.95 and x = 7.0. Large contributions to the thermal expansivities due to O-ordering are found for x ~ 6.95, which disappear below a kinetic glass-like transition near room temperature. The kinetics at this glass transition is governed by an energy barrier of 0.98 +- 0.07 eV, in very good agreement with other O-ordering studies. Using thermodynamic arguments, we show that O-ordering in the Y123 system is particularly sensitive to uniaxial pressure (stress) along the chain axis and that the lack of well-ordered chains in Nd123 and La123 is most likely a consequence of a chemical-pressure effect.Comment: 4 pages, 3 figures, submitted to PR

    Annealing-Dependent Magnetic Depth Profile in Ga[1-x]Mn[x]As

    Get PDF
    We have studied the depth-dependent magnetic and structural properties of as-grown and optimally annealed Ga[1-x]Mn[x]As films using polarized neutron reflectometry. In addition to increasing total magnetization, the annealing process was observed to produce a significantly more homogeneous distribution of the magnetization. This difference in the films is attributed to the redistribution of Mn at interstitial sites during the annealing process. Also, we have seen evidence of significant magnetization depletion at the surface of both as-grown and annealed films.Comment: 5 pages, 3 figure

    Screened Coulomb interactions in metallic alloys: I. Universal screening in the atomic sphere approximation

    Get PDF
    We have used the locally self-consistent Green's function (LSGF) method in supercell calculations to establish the distribution of the net charges assigned to the atomic spheres of the alloy components in metallic alloys with different compositions and degrees of order. This allows us to determine the Madelung potential energy of a random alloy in the single-site mean field approximation which makes the conventional single-site density-functional- theory coherent potential approximation (SS-DFT-CPA) method practically identical to the supercell LSGF method with a single-site local interaction zone that yields an exact solution of the DFT problem. We demonstrate that the basic mechanism which governs the charge distribution is the screening of the net charges of the alloy components that makes the direct Coulomb interactions short-ranged. In the atomic sphere approximation, this screening appears to be almost independent of the alloy composition, lattice spacing, and crystal structure. A formalism which allows a consistent treatment of the screened Coulomb interactions within the single-site mean-filed approximation is outlined. We also derive the contribution of the screened Coulomb interactions to the S2 formalism and the generalized perturbation method.Comment: 28 pages, 8 figure
    corecore