1,239 research outputs found

    Wang-Landau molecular dynamics technique to search for low-energy conformational space of proteins

    Full text link
    Multicanonical molecular dynamics (MD) is a powerful technique for sampling conformations on rugged potential surfaces such as protein. However, it is notoriously difficult to estimate the multicanonical temperature effectively. Wang and Landau developed a convenient method for estimating the density of states based on a multicanonical Monte Carlo method. In their method, the density of states is calculated autonomously during a simulation. In this paper we develop a set of techniques to effectively apply the Wang-Landau method to MD simulations. In the multicanonical MD, the estimation of the derivative of the density of states is critical. In order to estimate it accurately, we devise two original improvements. First, the correction for the density of states is made smooth by using the Gaussian distribution obtained by a short canonical simulation. Second, an approximation is applied to the derivative, which is based on the Gaussian distribution and the multiple weighted histogram technique. A test of this method was performed with small polypeptides, Met-enkephalin and Trp-cage, and it is demonstrated that Wang-Landau MD is consistent with replica exchange MD but can sample much larger conformational space.Comment: 8 pages, 7 figures, accepted for publication in Physical Review

    Theory of Systematic Computational Error in Free Energy Differences

    Get PDF
    Systematic inaccuracy is inherent in any computational estimate of a non-linear average, due to the availability of only a finite number of data values, N. Free energy differences (DF) between two states or systems are critically important examples of such averages in physical, chemical and biological settings. Previous work has demonstrated, empirically, that the ``finite-sampling error'' can be very large -- many times kT -- in DF estimates for simple molecular systems. Here, we present a theoretical description of the inaccuracy, including the exact solution of a sample problem, the precise asymptotic behavior in terms of 1/N for large N, the identification of universal law, and numerical illustrations. The theory relies on corrections to the central and other limit theorems, and thus a role is played by stable (Levy) probability distributions.Comment: 5 pages, 4 figure

    Efficient Passive ICS Device Discovery and Identification by MAC Address Correlation

    Full text link
    Owing to a growing number of attacks, the assessment of Industrial Control Systems (ICSs) has gained in importance. An integral part of an assessment is the creation of a detailed inventory of all connected devices, enabling vulnerability evaluations. For this purpose, scans of networks are crucial. Active scanning, which generates irregular traffic, is a method to get an overview of connected and active devices. Since such additional traffic may lead to an unexpected behavior of devices, active scanning methods should be avoided in critical infrastructure networks. In such cases, passive network monitoring offers an alternative, which is often used in conjunction with complex deep-packet inspection techniques. There are very few publications on lightweight passive scanning methodologies for industrial networks. In this paper, we propose a lightweight passive network monitoring technique using an efficient Media Access Control (MAC) address-based identification of industrial devices. Based on an incomplete set of known MAC address to device associations, the presented method can guess correct device and vendor information. Proving the feasibility of the method, an implementation is also introduced and evaluated regarding its efficiency. The feasibility of predicting a specific device/vendor combination is demonstrated by having similar devices in the database. In our ICS testbed, we reached a host discovery rate of 100% at an identification rate of more than 66%, outperforming the results of existing tools.Comment: http://dx.doi.org/10.14236/ewic/ICS2018.

    Safety, efficacy and glucose turnover of reduced prandial boluses during closed-loop therapy in adolescents with type 1 diabetes: a randomized clinical trial.

    Get PDF
    AIMS: To evaluate safety, efficacy and glucose turnover during closed-loop with meal announcement using reduced prandial insulin boluses in adolescents with type 1 diabetes (T1D). METHODS: We conducted a randomized crossover study comparing closed-loop therapy with standard prandial insulin boluses versus closed-loop therapy with prandial boluses reduced by 25%. Eight adolescents with T1D [3 males; mean (standard deviation) age 15.9 (1.5) years, glycated haemoglobin 74 (17) mmol/mol; median (interquartile range) total daily dose 0.9 (0.7, 1.1) IU/kg/day] were studied on two 36-h-long visits. In random order, subjects received closed-loop therapy with either standard or reduced insulin boluses administered with main meals (50-80 g carbohydrates) but not with snacks (15-30 g carbohydrates). Stable-label tracer dilution methodology measured total glucose appearance (Ra_total) and glucose disposal (Rd). RESULTS: The median (interquartile range) time spent in target (3.9-10 mmol/l) was similar between the two interventions [74 (66, 84)% vs 80 (65, 96)%; p = 0.87] as was time spent above 10 mmol/l [21.8 (16.3, 33.5)% vs 18.0 (4.1, 34.2)%; p = 0.87] and below 3.9 mmol/l [0 (0, 1.5)% vs 0 (0, 1.8)%; p = 0.88]. Mean plasma glucose was identical during the two interventions [8.4 (0.9) mmol/l; p = 0.98]. Hypoglycaemia occurred once 1.5 h post-meal during closed-loop therapy with standard bolus. Overall insulin delivery was lower with reduced prandial boluses [61.9 (55.2, 75.0) vs 72.5 (63.6, 80.3) IU; p = 0.01] and resulted in lower mean plasma insulin concentration [186 (171, 260) vs 252 (198, 336) pmol/l; p = 0.002]. Lower plasma insulin was also documented overnight [160 (136, 192) vs 191 (133, 252) pmol/l; p = 0.01, pooled nights]. Ra_total was similar [26.3 (21.9, 28.0) vs 25.4 (21.0, 29.2) µmol/kg/min; p = 0.19] during the two interventions as was Rd [25.8 (21.0, 26.9) vs 25.2 (21.2, 28.8) µmol/kg/min; p = 0.46]. CONCLUSIONS: A 25% reduction in prandial boluses during closed-loop therapy maintains similar glucose control in adolescents with T1D whilst lowering overall plasma insulin levels. It remains unclear whether closed-loop therapy with a 25% reduction in prandial boluses would prevent postprandial hypoglycaemia.US National Institute of Diabetes and Digestive and Kidney Diseases (1R01DK085621). Support for the Artificial Pancreas research programme by the JDRF, Diabetes UK, NIHR Cambridge Biomedical Research Centre, and Wellcome Trust Strategic Award (100574/Z/12/Z) is acknowledged.This is the final version of the article. It first appeared from Wiley via http://dx.doi.org/10.1111/dom.1254

    Lesbian and bisexual women's human rights, sexual rights and sexual citizenship: negotiating sexual health in England.

    Get PDF
    Lesbian and bisexual women's sexual health is neglected in much Government policy and practice in England and Wales. This paper examines lesbian and bisexual women's negotiation of sexual health, drawing on findings from a small research project. Themes explored include invisibility and lack of information, influences on decision-making and sexual activities and experiences of services and barriers to sexual healthcare. Key issues of importance in this respect are homophobic and heterosexist social contexts. Drawing on understandings of lesbian, gay and bisexual human rights, sexual rights and sexual citizenship, it is argued that these are useful lenses through which to examine and address lesbian and bisexual women's sexual health and related inequalities

    Protecting High Energy Barriers: A New Equation to Regulate Boost Energy in Accelerated Molecular Dynamics Simulations

    Get PDF
    Molecular dynamics (MD) is one of the most common tools in computational chemistry. Recently, our group has employed accelerated molecular dynamics (aMD) to improve the conformational sampling over conventional molecular dynamics techniques. In the original aMD implementation, sampling is greatly improved by raising energy wells below a predefined energy level. Recently, our group presented an alternative aMD implementation where simulations are accelerated by lowering energy barriers of the potential energy surface. When coupled with thermodynamic integration simulations, this implementation showed very promising results. However, when applied to large systems, such as proteins, the simulation tends to be biased to high energy regions of the potential landscape. The reason for this behavior lies in the boost equation used since the highest energy barriers are dramatically more affected than the lower ones. To address this issue, in this work, we present a new boost equation that prevents oversampling of unfavorable high energy conformational states. The new boost potential provides not only better recovery of statistics throughout the simulation but also enhanced sampling of statistically relevant regions in explicit solvent MD simulations

    Mechanism of MicroRNA-Target Interaction: Molecular Dynamics Simulations and Thermodynamics Analysis

    Get PDF
    MicroRNAs (miRNAs) are endogenously produced ∼21-nt riboregulators that associate with Argonaute (Ago) proteins to direct mRNA cleavage or repress the translation of complementary RNAs. Capturing the molecular mechanisms of miRNA interacting with its target will not only reinforce the understanding of underlying RNA interference but also fuel the design of more effective small-interfering RNA strands. To address this, in the present work the RNA-bound (Ago-miRNA, Ago-miRNA-target) and RNA-free Ago forms were analyzed by performing both molecular dynamics simulations and thermodynamic analysis. Based on the principal component analysis results of the simulation trajectories as well as the correlation analysis in fluctuations of residues, we discover that: 1) three important (PAZ, Mid and PIWI) domains exist in Argonaute which define the global dynamics of the protein; 2) the interdomain correlated movements are so crucial for the interaction of Ago-RNAs that they not only facilitate the relaxation of the interactions between residues surrounding the RNA binding channel but also induce certain conformational changes; and 3) it is just these conformational changes that expand the cavity of the active site and open putative pathways for both the substrate uptake and product release. In addition, by thermodynamic analysis we also discover that for both the guide RNA 5′-end recognition and the facilitated site-specific cleavage of the target, the presence of two metal ions (of Mg2+) plays a predominant role, and this conclusion is consistent with the observed enzyme catalytic cleavage activity in the ternary complex (Ago-miRNA-mRNA). Our results find that it is the set of arginine amino acids concentrated in the nucleotide-binding channel in Ago, instead of the conventionally-deemed seed base-paring, that makes greater contributions in stabilizing the binding of the nucleic acids to Ago

    Cyclodextrin Complexes of Reduced Bromonoscapine in Guar Gum Microspheres Enhance Colonic Drug Delivery

    Get PDF
    Here, we report improved solubility and enhanced colonic delivery of reduced bromonoscapine (Red-Br-Nos), a cyclic ether brominated analogue of noscapine, upon encapsulation of its cyclodextrin (CD) complexes in bioresponsive guar gum microspheres (GGM). Phase−solubility analysis suggested that Red-Br-Nos complexed with β-CD and methyl-β-CD in a 1:1 stoichiometry, with a stability constant (Kc) of 2.29 × 103 M−1 and 4.27 × 103 M−1. Fourier transforms infrared spectroscopy indicated entrance of an O−CH2 or OCH3−C6H4−OCH3 moiety of Red-Br-Nos in the β-CD or methyl-β- CD cavity. Furthermore, the cage complex of Red-Br-Nos with β-CD and methyl-β-CD was validated by several spectral techniques. Rotating frame Overhauser enhancement spectroscopy revealed that the Ha proton of the OCH3−C6H4−OCH3 moiety was closer to the H5 proton of β-CD and the H3 proton of the methyl-β-CD cavity. The solubility of Red-Br-Nos in phosphate buffer saline (PBS, pH ∼ 7.4) was improved by ∼10.7-fold and ∼21.2-fold when mixed with β-CD and methyl-β-CD, respectively. This increase in solubility led to a favorable decline in the IC50 by ∼2-fold and ∼3-fold for Red-Br-Nos−β-CD-GGM and Red-Br-Nos−methyl-β-CD-GGM formulations respectively, compared to free Red-Br-Nos−β-CD and Red-Br-Nos−methyl-β-CD in human colon HT-29 cells. GGM-bearing drug complex formulations were found to be highly cytotoxic to the HT-29 cell line and further effective with simultaneous continuous release of Red-Br-Nos from microspheres. This is the first study to showing the preparation of drug-complex loaded GGMS for colon delivery of Red-Br-Nos that warrants preclinical assessment for the effective management of colon cancer
    • …
    corecore