13,939 research outputs found

    Thermodynamics of a Higher Order Phase Transition: Scaling Exponents and Scaling Laws

    Full text link
    The well known scaling laws relating critical exponents in a second order phase transition have been generalized to the case of an arbitrarily higher order phase transition. In a higher order transition, such as one suggested for the superconducting transition in Ba0.6_{0.6}K0.4_{0.4}BiO3_3 and in Bi2_2Sr2_2CaCu2_2O8_8, there are singularities in higher order derivatives of the free energy. A relation between exponents of different observables has been found, regardless of whether the exponents are classical (mean-field theory, no fluctuations, integer order of a transition) or not (fluctuation effects included). We also comment on the phase transition in a thin film.Comment: 10 pages, no figure

    Analytical approach to the transition to thermal hopping in the thin- and thick-wall approximations

    Get PDF
    The nature of the transition from the quantum tunneling regime at low temperatures to the thermal hopping regime at high temperatures is investigated analytically in scalar field theory. An analytical bounce solution is presented, which reproduces the action in the thin-wall as well as thick-wall limits. The transition is first order for the case of a thin wall while for the thick wall case it is second order.Comment: Latex file, 22 pages, 4 Postscript figure

    Exact Solutions of the Saturable Discrete Nonlinear Schrodinger Equation

    Get PDF
    Exact solutions to a nonlinear Schr{\"o}dinger lattice with a saturable nonlinearity are reported. For finite lattices we find two different standing-wave-like solutions, and for an infinite lattice we find a localized soliton-like solution. The existence requirements and stability of these solutions are discussed, and we find that our solutions are linearly stable in most cases. We also show that the effective Peierls-Nabarro barrier potential is nonzero thereby indicating that this discrete model is quite likely nonintegrable

    Role of Relaxation in an Adiabatic Change

    Get PDF

    High efficiency compound semiconductor concentrator photovoltaics

    Get PDF
    Special emphasis was given to the high yield pilot production of packaged AlGaAs/GaAs concentrator solar cells, using organometallic VPE for materials growth, the demonstration of a concentrator module using 12 of these cells which achieved 16.4 percent conversion efficiency at 50 C coolant inlet temperature, and the demonstration of a spectral splitting converter module that achieved in excess of 20 percent efficiency. This converter employed ten silicon and ten AlGaAs cells with a dichroic filter functioning as the beam splitter. A monolithic array of AlGaAs/GaAs solar cells is described

    Discrete Breathers in a Nonlinear Polarizability Model of Ferroelectrics

    Full text link
    We present a family of discrete breathers, which exists in a nonlinear polarizability model of ferroelectric materials. The core-shell model is set up in its non-dimensionalized Hamiltonian form and its linear spectrum is examined. Subsequently, seeking localized solutions in the gap of the linear spectrum, we establish that numerically exact and potentially stable discrete breathers exist for a wide range of frequencies therein. In addition, we present nonlinear normal mode, extended spatial profile solutions from which the breathers bifurcate, as well as other associated phenomena such as the formation of phantom breathers within the model. The full bifurcation picture of the emergence and disappearance of the breathers is complemented by direct numerical simulations of their dynamical instability, when the latter arises.Comment: 9 pages, 7 figures, 1 tabl
    corecore