8,658 research outputs found

    Polarization and frequency disentanglement of photons via stochastic polarization mode dispersion

    Full text link
    We investigate the quantum decoherence of frequency and polarization variables of photons via polarization mode dispersion in optical fibers. By observing the analogy between the propagation equation of the field and the Schr\"odinger equation, we develop a master equation under Markovian approximation and analytically solve for the field density matrix. We identify distinct decay behaviors for the polarization and frequency variables for single-photon and two-photon states. For the single photon case, purity functions indicate that complete decoherence for each variable is possible only for infinite fiber length. For entangled two-photon states passing through separate fibers, entanglement associated with each variable can be completely destroyed after characteristic finite propagation distances. In particular, we show that frequency disentanglement is independent of the initial polarization status. For propagation of two photons in a common fiber, the evolution of a polarization singlet state is addressed. We show that while complete polarization disentanglement occurs at a finite propagation distance, frequency entanglement could survive at any finite distance for gaussian states.Comment: 2 figure

    A global model of carbon, nitrogen and phosphorus cycles for the terrestrial biosphere

    Get PDF
    Carbon storage by many terrestrial ecosystems can be limited by nutrients, predominantly nitrogen (N) and phosphorus (P), in addition to other environmental constraints, water, light and temperature. However the spatial distribution and the extent of both N and P limitation at the global scale have not been quantified. Here we have developed a global model of carbon (C), nitrogen (N) and phosphorus (P) cycles for the terrestrial biosphere. Model estimates of steady state C and N pool sizes and major fluxes between plant, litter and soil pools, under present climate conditions, agree well with various independent estimates. The total amount of C in the terrestrial biosphere is 2767 Gt C, and the C fractions in plant, litter and soil organic matter are 19%, 4% and 77%. The total amount of N is 135 Gt N, with about 94% stored in the soil, 5% in the plant live biomass, and 1% in litter. We found that the estimates of total soil P and its partitioning into different pools in soil are quite sensitive to biochemical P mineralization. The total amount of P (plant biomass, litter and soil) excluding occluded P in soil is 17 Gt P in the terrestrial biosphere, 33% of which is stored in the soil organic matter if biochemical P mineralization is modelled, or 31 Gt P with 67% in soil organic matter otherwise. <br><br> This model was used to derive the global distribution and uncertainty of N or P limitation on the productivity of terrestrial ecosystems at steady state under present conditions. Our model estimates that the net primary productivity of most tropical evergreen broadleaf forests and tropical savannahs is reduced by about 20% on average by P limitation, and most of the remaining biomes are N limited; N limitation is strongest in high latitude deciduous needle leaf forests, and reduces its net primary productivity by up to 40% under present conditions

    Natural orbits of atomic Cooper pairs in a nonuniform Fermi gas

    Full text link
    We examine the basic mode structure of atomic Cooper pairs in an inhomogeneous Fermi gas. Based on the properties of Bogoliubov quasi-particle vacuum, the single particle density matrix and the anomalous density matrix share the same set of eigenfunctions. These eigenfunctions correspond to natural pairing orbits associated with the BCS ground state. We investigate these orbits for a Fermi gas in a spherical harmonic trap, and construct the wave function of a Cooper pair in the form of Schmidt decomposition. The issue of spatial quantum entanglement between constituent atoms in a pair is addressed.Comment: 14 pages, 4 figures, submitted to Phys. Rev.

    Understanding Computer Forensics Requirements in China via the “Panda Burning Incense” Virus Case

    Get PDF
    In March 2012, Mainland China has amended its Criminal Procedure Law, which includes the introduction of a new type of evidence, i.e., digital evidence, to the court of law. To better understand the development of computer forensics and digital evidence in Mainland China, this paper discusses the Chinese legal system in relation to digital investigation and how the current legal requirements affect the existing legal and technical usage of digital evidence at legal proceedings. Through studying the famous “Panda Burning Incense (Worm.WhBoy.cw)” virus case that happened in 2007, this paper aims to provide a better understanding of how to properly conduct computer forensics examination and present digital evidence at court of law in Mainland China

    Quantum fluctuations in coupled dark solitons in trapped Bose-Einstein condensates

    Full text link
    We show that the quantum fluctuations associated with the Bogoliubov quasiparticle vacuum can be strongly concentrated inside dark solitons in a trapped Bose Einstein condensate. We identify a finite number of anomalous modes that are responsible for such quantum phenomena. The fluctuations in these anomalous modes correspond to the `zero-point' oscillations in coupled dark solitons.Comment: 4 pages, 3 figure

    A spinor approach to Walker geometry

    Full text link
    A four-dimensional Walker geometry is a four-dimensional manifold M with a neutral metric g and a parallel distribution of totally null two-planes. This distribution has a natural characterization as a projective spinor field subject to a certain constraint. Spinors therefore provide a natural tool for studying Walker geometry, which we exploit to draw together several themes in recent explicit studies of Walker geometry and in other work of Dunajski (2002) and Plebanski (1975) in which Walker geometry is implicit. In addition to studying local Walker geometry, we address a global question raised by the use of spinors.Comment: 41 pages. Typos which persisted into published version corrected, notably at (2.15

    The Evolutionary Status of SS433

    Get PDF
    We consider possible evolutionary models for SS 433. We assume that common-envelope evolution is avoided if radiation pressure is able to expel most of a super-Eddington accretion flow from a region smaller than the accretor's Roche lobe. This condition is satisfied, at least initially, for largely radiative donors with masses in the range 4-12 solar masses. For donors more massive than about 5 solar masses, moderate mass ratios q = M_2/M_1 > 1 are indicated, thus tending to favor black-hole accretors. For lower mass donors, evolutionary considerations do not distinguish between a neutron star or black hole accretor. In all cases the mass transfer (and mass loss) rates are much larger than the likely mass-loss rate in the precessing jets. Almost all of the transferred mass is expelled at radii considerably larger than the jet acceleration region, producing the "stationary" H-alpha line, the infrared luminosity, and accounting for the low X-ray luminosity.Comment: 13 pages, Astrophysical Journal Letters, accepte

    The Schrodinger particle in an oscillating spherical cavity

    Full text link
    We study a Schrodinger particle in an infinite spherical well with an oscillating wall. Parametric resonances emerge when the oscillation frequency is equal to the energy difference between two eigenstates of the static cavity. Whereas an analytic calculation based on a two-level system approximation reproduces the numerical results at low driving amplitudes, epsilon, we observe a drastic change of behaviour when epsilon > 0.1, when new resonance states appear bearing no apparent relation to the eigenstates of the static system.Comment: 9 pages, 6 figures, corrected typo

    Properties and localization of beta-endorphin receptor in rat brain.

    Full text link

    Fragmented and Single Condensate Ground States of Spin-1 Bose Gas

    Full text link
    We show that the ground state of a spin-1 Bose gas with an antiferro- magnetic interaction is a fragmented condensate in uniform magnetic fields. The number fluctuations in each spin component change rapidly from being enormous (order NN) to exceedingly small (order 1) as the magnetization of the system increases. A fragmented condensate can be turned into a single condensate state by magnetic field gradients. The conditions for existence and the method of detecting fragmented states are presented.Comment: 4 pages, no figure
    • …
    corecore