15,584 research outputs found

    Top quark forward-backward asymmetry and charge asymmetry in left-right twin Higgs model

    Full text link
    In order to explain the Tevatron anomaly of the top quark forward-backward asymmetry AFBtA_{FB}^t in the left-right twin Higgs model, we choose to give up the lightest neutral particle of h^\hat{h} field as a stable dark matter candidate. Then a new Yukawa interaction for h^\hat{h} is allowed, which can be free from the constraint of same-sign top pair production and contribute sizably to AFBtA_{FB}^t. Considering the constraints from the production rates of the top pair (ttˉt\bar t), the top decay rates and ttˉt\bar{t} invariant mass distribution, we find that this model with such new Yukawa interaction can explain AFBtA_{FB}^t measured at the Tevatron while satisfying the charge asymmetry ACtA_{C}^t measured at the LHC.Moreover, this model predicts a strongly correlation between ACtA_{C}^t at the LHC and AFBtA_{FB}^t at the Tevatron, i.e., ACtA_{C}^t increases as AFBtA_{FB}^t increases.Comment: 17 pages, 9 figures; matches the published versio

    Spectral Representation Theory for Dielectric Behavior of Nonspherical Cell Suspensions

    Full text link
    Recent experiments revealed that the dielectric dispersion spectrum of fission yeast cells in a suspension was mainly composed of two sub-dispersions. The low-frequency sub-dispersion depended on the cell length, while the high-frequency one was independent of it. The cell shape effect was simulated by an ellipsoidal cell model but the comparison between theory and experiment was far from being satisfactory. Prompted by the discrepancy, we proposed the use of spectral representation to analyze more realistic cell models. We adopted a shell-spheroidal model to analyze the effects of the cell membrane. It is found that the dielectric property of the cell membrane has only a minor effect on the dispersion magnitude ratio and the characteristic frequency ratio. We further included the effect of rotation of dipole induced by an external electric field, and solved the dipole-rotation spheroidal model in the spectral representation. Good agreement between theory and experiment has been obtained.Comment: 19 pages, 5 eps figure

    Glassy Dynamics in a Frustrated Spin System: Role of Defects

    Full text link
    In an effort to understand the glass transition, the kinetics of a spin model with frustration but no quenched randomness has been analyzed. The phenomenology of the spin model is remarkably similiar to that of structural glasses. Analysis of the model suggests that defects play a major role in dictating the dynamics as the glass transition is approached.Comment: 9 pages, 5 figures, accepted in J. Phys.: Condensed Matter, proceedings of the Trieste workshop on "Unifying Concepts in Glass Physics

    Zero-temperature criticality in the two-dimensional gauge glass model

    Full text link
    The zero-temperature critical state of the two-dimensional gauge glass model is investigated. It is found that low-energy vortex configurations afford a simple description in terms of gapless, weakly interacting vortex-antivortex pair excitations. A linear dielectric screening calculation is presented in a renormalization group setting that yields a power-law decay of spin-wave stiffness with distance. These properties are in agreement with low-temperature specific heat and spin-glass susceptibility data obtained in large-scale multi-canonical Monte Carlo simulations.Comment: 4 pages, 4 figure

    Development of hot drawing process for nitinol tube

    Get PDF
    In recent years, Nitinol, near-equiatomic nickel-titanium alloys, have found growing applications in medical technology and joining technology, due to their special characteristics such as shape memory, superplasticity and biocompatibility. The production of Nitinol tube cost-effectively remains a technical challenge. In this paper, we describe a hot drawing process for Nitinol tube production. A Nitinol tube blank and a metal core are assembled together. The assembly is hot drawn for several passes to a final diameter. The metal core is then plastically stretched to reduce its diameter and removed from the tube. Hot drawing process has been applied to Ni50.7Ti and Ni47Ti44Nb9 alloys. Nitinol tubes of 13.6 mm outer diameter and 1 mm wall thickness have been successfully produced from a tube blank of 20 mm outer diameter and 3.5 mm thickness

    η\eta-meson in nuclear matter

    Full text link
    The η\eta-nucleon (η\etaN) interactions are deduced from the heavy baryon chiral perturbation theory up to the next-to-leading-order terms. Combining the relativistic mean-field theory for nucleon system, we have studied the in-medium properties of η\eta-meson. We find that all the elastic scattering η\etaN interactions come from the next-to-leading-order terms. The η\eta N sigma term is found to be about 280±\pm130 MeV. The off-shell terms are also important to the in-medium properties of η\eta-meson. On application of the latest determination of the η\etaN scattering length, the ratio of η\eta-meson effective mass to its vacuum value is near 0.84±0.0150.84\pm0.015, while the optical potential is about −(83±5)-(83\pm5) MeV, at the normal nuclear density.Comment: 8 pages, 3 figures, to appear in PRC, many modification

    Healthcare data mining: predicting inpatient length of stay

    Get PDF
    Data mining approaches have been widely applied in the field of healthcare. At the same time it is recognized that most healthcare datasets are full of missing values. In this paper we apply decision trees, Naive Bayesian classifiers and feature selection methods to a geriatric hospital dataset in order to predict inpatient length of stay, especially for the long stay patients

    Dielectric Behavior of Nonspherical Cell Suspensions

    Full text link
    Recent experiments revealed that the dielectric dispersion spectrum of fission yeast cells in a suspension was mainly composed of two sub-dispersions. The low-frequency sub-dispersion depended on the cell length, whereas the high-frequency one was independent of it. The cell shape effect was qualitatively simulated by an ellipsoidal cell model. However, the comparison between theory and experiment was far from being satisfactory. In an attempt to close up the gap between theory and experiment, we considered the more realistic cells of spherocylinders, i.e., circular cylinders with two hemispherical caps at both ends. We have formulated a Green function formalism for calculating the spectral representation of cells of finite length. The Green function can be reduced because of the azimuthal symmetry of the cell. This simplification enables us to calculate the dispersion spectrum and hence access the effect of cell structure on the dielectric behavior of cell suspensions.Comment: Preliminary results have been reported in the 2001 March Meeting of the American Physical Society. Accepted for publications in J. Phys.: Condens. Matte

    Multiband effects on beta-FeSe single crystals

    Full text link
    We present the upper critical fields Hc2(T) and Hall effect in beta-FeSe single crystals. The Hc2(T) increases as the temperature is lowered for field applied parallel and perpendicular to (101), the natural growth facet of the crystal. The Hc2(T) for both field directions and the anisotropy at low temperature increase under pressure. Hole carriers are dominant at high magnetic fields. However, the contribution of electron-type carriers is significant at low fields and low temperature. Our results show that multiband effects dominate Hc2(T) and electronic transport in the normal state
    • …
    corecore