16,293 research outputs found
Tunable transmission and bistability in left-handed bandgap structures
We study the defect-induced nonlinear transmission of a periodic structure
created by alternating slabs of two materials with positive and negative
refractive index. We demonstrate bistable switching and tunable nonlinear
transmission in a novel type of bandgap that corresponds to the vanishing
average refractive index, and compare the observed effects for two types of the
bandgaps.Comment: 3 pages, 5 figures; significant change
Bistable diode action in left-handed periodic structures
We study nonlinear transmission of an asymmetric multilayer structure created
by alternating slabs of two materials with positive and negative refractive
index. We demonstrate that such a structure exhibits passive spatially
nonreciprocal transmission of electromagnetic waves, the analogue of the
electronic diode. We study the properties of this left-handed diode and confirm
its highly nonreciprocal and bistable transmittance by employing direct
simulations.Comment: 4 pages, 5 figure
Backward Tamm states in left-handed metamaterials
We study the electromagnetic surface waves localized at an interface
separating a one-dimensional photonic crystal and left-handed metamaterial, the
so-called surface Tamm states. We demonstrate that the metamaterial allows for
a flexible control of the dispersion properties of surface states, and can
support the Tamm states with a backward energy flow and a vortex-like
structure.Comment: 3 pages, 5 figure
Power system applications of fiber optic sensors
This document is a progress report of work done in 1985 on the Communications and Control for Electric Power Systems Project at the Jet Propulsion Laboratory. These topics are covered: Electric Field Measurement, Fiber Optic Temperature Sensing, and Optical Power transfer. Work was done on the measurement of ac and dc electric fields. A prototype sensor for measuring alternating fields was made using a very simple electroscope approach. An electronic field mill sensor for dc fields was made using a fiber optic readout, so that the entire probe could be operated isolated from ground. There are several instances in which more precise knowledge of the temperature of electrical power apparatus would be useful. This report describes a number of methods whereby the distributed temperature profile can be obtained using a fiber optic sensor. The ability to energize electronics by means of an optical fiber has the advantage that electrical isolation is maintained at low cost. In order to accomplish this, it is necessary to convert the light energy into electrical form by means of photovoltaic cells. JPL has developed an array of PV cells in gallium arsenide specifically for this purpose. This work is described
Complete bandgaps in one-dimensional left-handed periodic structures
Artificially fabricated structures with periodically modulated parameters
such as photonic crystals offer novel ways of controlling the flow of light due
to the existence of a range of forbidden frequencies associated with a photonic
bandgap. It is believed that modulation of the refractive index in all three
spatial dimensions is required to open a complete bandgap and prevent the
propagation of electromagnetic waves in all directions. Here we reveal that, in
a sharp contrast to what was known before and contrary to the accepted physical
intuition, a one-dimensional periodic structure containing the layers of
transparent left-handed (or negative-index) metamaterial can trap light in
three-dimensional space due to the existence of a complete bandgap.Comment: 4 pages, 5 figure
Scattering of slow-light gap solitons with charges in a two-level medium
The Maxwell-Bloch system describes a quantum two-level medium interacting
with a classical electromagnetic field by mediation of the the population
density. This population density variation is a purely quantum effect which is
actually at the very origin of nonlinearity. The resulting nonlinear coupling
possesses particularly interesting consequences at the resonance (when the
frequency of the excitation is close to the transition frequency of the
two-level medium) as e.g. slow-light gap solitons that result from the
nonlinear instability of the evanescent wave at the boundary. As nonlinearity
couples the different polarizations of the electromagnetic field, the
slow-light gap soliton is shown to experience effective scattering whith
charges in the medium, allowing it for instance to be trapped or reflected.
This scattering process is understood qualitatively as being governed by a
nonlinear Schroedinger model in an external potential related to the charges
(the electrostatic permanent background component of the field).Comment: RevTex, 14 pages with 5 figures, to appear in J. Phys. A: Math. Theo
Scanning tunneling spectroscopic studies of the pairing state of cuprate superconductors
Quasiparticle tunneling spectra of both hole-doped (p-type) and electron-doped (n-type) cuprates are studied using a low-temperature scanning tunneling microscope. The results reveal that neither the pairing symmetry nor the pseudogap phenomenon is universal among all cuprates, and that the response of n-type cuprates to quantum impurities is drastically different from that of the p-type cuprates. The only ubiquitous features among all cuprates appear to be the strong electronic correlation and the nearest-neighbor antiferromagnetic Cu2+-Cu2+ coupling in the CuO2 planes
- …