94,603 research outputs found
Novel electronic and magnetic properties of BN sheet decorated with hydrogen and fluorine
First principles calculations based on density functional theory reveal some
unusual properties of BN sheet functionalized with hydrogen and fluorine. These
properties differ from those of similarly functionalized graphene even though
both share the same honeycomb structure. (1) Unlike graphene which undergoes a
metal to insulator transition when fully hydrogenated, the band gap of the BN
sheet significantly narrows when fully saturated with hydrogen. Furthermore,
the band gap of the BN sheet can be tuned from 4.7 eV to 0.6 eV and the system
can be a direct or an indirect semiconductor or even a half-metal depending
upon surface coverage. (2) Unlike graphene, BN sheet has hetero-atomic
composition, when co-decorated with H and F, it can lead to anisotropic
structures with rich electronic and magnetic properties. (3) Unlike graphene,
BN sheets can be made ferromagnetic, antiferromagnetic, or magnetically
degenerate depending upon how the surface is functionalized. (4) The stability
of magnetic coupling of functionalized BN sheet can be further modulated by
applying external strain. Our study highlights the potential of functionalized
BN sheets for novel applications.Comment: 18 pages, 6 figures, and 1 tabl
Spin-one ferromagnets with single-ion anisotropy in a perpendicular external field
In this paper, the conventional Holstein-Primakoff method is generalized with
the help of the characteristic angle transformation [Lei Zhou and Ruibao Tao,
J. Phys. A {\bf 27} 5599 (1994)] for the spin-one magnetic systems with
single-ion anisotropies. We find that the weakness of the conventional method
for such systems can be overcome by the new approach. Two models will be
discussed to illuminate the main idea, which are the ``easy-plane" and the
``easy-axis" spin-one ferromagnet, respectively. Comparisons show that the
current approach can give reasonable ground state properties for the magnetic
system with ``easy-plane" anisotropy though the conventional method never can,
and can give a better representation than the conventional one for the magnetic
system with ``easy-axis" anisotropy though the latter is usually believed to be
a good approximation in such case. Study of the easy-plane model shows that
there is a phase transition induced by the external field, and the
low-temperature specific heat may have a peak as the field reaches the critical
value.Comment: Using LaTex. To be published in the September 1 issue of Physical
Review B (1996). Email address: [email protected]
Melt-growth dynamics in CdTe crystals
We use a new, quantum-mechanics-based bond-order potential (BOP) to reveal
melt-growth dynamics and fine-scale defect formation mechanisms in CdTe
crystals. Previous molecular dynamics simulations of semiconductors have shown
qualitatively incorrect behavior due to the lack of an interatomic potential
capable of predicting both crystalline growth and property trends of many
transitional structures encountered during the melt crystal
transformation. Here we demonstrate successful molecular dynamics simulations
of melt-growth in CdTe using a BOP that significantly improves over other
potentials on property trends of different phases. Our simulations result in a
detailed understanding of defect formation during the melt-growth process.
Equally important, we show that the new BOP enables defect formation mechanisms
to be studied at a scale level comparable to empirical molecular dynamics
simulation methods with a fidelity level approaching quantum-mechanical method
Calculation of renormalized viscosity and resistivity in magnetohydrodynamic turbulence
A self-consistent renormalization (RG) scheme has been applied to nonhelical
magnetohydrodynamic turbulence with normalized cross helicity and
. Kolmogorov's 5/3 powerlaw is assumed in order to compute the
renormalized parameters. It has been shown that the RG fixed point is stable
for . The renormalized viscosity and resistivity
have been calculated, and they are found to be positive for all
parameter regimes. For and large Alfv\'{e}n ratio (ratio of
kinetic and magnetic energies) , and . As
is decreased, increases and decreases, untill where both and are approximately zero. For large ,
both and vary as . The renormalized parameters for
the case are also reported.Comment: 19 pages REVTEX, 3 ps files (Phys. Plasmas, v8, 3945, 2001
Recommended from our members
Transcriptional profiling of single fiber cells in a transgenic paradigm of an inherited childhood cataract reveals absence of molecular heterogeneity.
Our recent single-cell transcriptomic analysis has demonstrated that heterogeneous transcriptional activity attends molecular transition from the nascent to terminally differentiated fiber cells in the developing mouse lens. To understand the role of transcriptional heterogeneity in terminal differentiation and the functional phenotype (transparency) of this tissue, here we present a single-cell analysis of the developing lens, in a transgenic paradigm of an inherited pathology, known as the lamellar cataract. Cataracts hinder transmission of light into the eye. Lamellar cataract is the most prevalent bilateral childhood cataract. In this disease of early infancy, initially, the opacities remain confined to a few fiber cells, thus presenting an opportunity to investigate early molecular events that lead to cataractogenesis. We used a previously established paradigm that faithfully recapitulates this disease in transgenic mice. About 500 single fiber cells, manually isolated from a 2-day-old transgenic lens were interrogated individually for the expression of all known 17 crystallins and 78 other relevant genes using a Biomark HD (Fluidigm). We find that fiber cells from spatially and developmentally discrete regions of the transgenic (cataract) lens show remarkable absence of the heterogeneity of gene expression. Importantly, the molecular variability of cortical fiber cells, the hallmark of the WT lens, is absent in the transgenic cataract, suggesting absence of specific cell-type(s). Interestingly, we find a repetitive pattern of gene activity in progressive states of differentiation in the transgenic lens. This molecular dysfunction portends pathology much before the physical manifestations of the disease
Population of human ventricular cell models calibrated with in vivo measurements unravels ionic mechanisms of cardiac alternans
Cardiac alternansis an important risk factor in cardiac physiology, and is related to the initiation of many pathophysiological conditions. However, the mechanisms underlying the generation of alternans remain unclear. In this study, we used a population of computational human ventricle models based onthe O’Hara model [1] to explore the effect of 11 key factors experimentally reported to be related to alternans. In vivo experimental datasets coming from patients undergoing cardiac surgery were used in the calibration of our in silico population of models. The calibrated models in the population were divided into two groups (Normal and Alternans) depending on alternans occurrence. Our results showed that there were significant differences in the following 5 ionic currents between the two groups: fast sodium current, sodium calcium exchanger current, sodium potassium pump current, sarcoplasmic reticulum (SR) calcium release flux and SR calcium reuptake flux. Further analysis indicated that fast sodium current and SR calcium uptake were the two most significant currents that contributed to voltage and calcium alternans generation, respectively
- …