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Electronic and magnetic properties of a BN sheet decorated with hydrogen and fluorine
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First-principles calculations based on density-functional theory reveal some unusual properties of BN sheet
functionalized with hydrogen and fluorine. These properties differ from those of similarly functionalized
graphene even though both share the same honeycomb structure. �1� Unlike graphene which undergoes a metal
to insulator transition when fully hydrogenated, the band gap of the BN sheet significantly narrows when fully
saturated with hydrogen. Furthermore, the band gap of the BN sheet can be tuned from 4.7 to 0.6 eV and the
system can be a direct or an indirect semiconductor or even a half-metal depending on surface coverage. �2�
Unlike graphene, the hydrogenation of BN sheet is endothermic. �3� Unlike graphene, BN sheet has heteroat-
omic composition. When codecorated with H and F, it can lead to anisotropic structures with rich electronic
and magnetic properties. �4� Unlike graphene, BN sheets can be made ferromagnetic, antiferromagnetic, or
magnetically degenerate depending on how the surface is functionalized. �5� The stability of magnetic coupling
of functionalized BN sheet can be further modulated by applying external strain. Our study highlights the
potential of functionalized BN sheets for unusual applications.

DOI: 10.1103/PhysRevB.81.085442 PACS number�s�: 36.40.Cg

I. INTRODUCTION

Dimensionality has become an important parameter to
tune the properties of materials. Currently, tremendous effort
has been devoted to two-dimensional �2D� atomic-layer-
based materials. One of such example is graphene1 which
has many advantages compared to carbon nanotubes �CNTs�
when used in polymeric composites. The covalently bonded
honeycomb lattice of the graphene sheet shows high stability
and exceptional properties2 such as high electron mobility
even at room temperature, ambipolar effect, Klein tunneling,
and anomalous quantum Hall effect. Especially, electrons in
graphene sheet behave like mass-less Dirac fermions making
the observation of several relativistic effects possible. The
impressive progress in graphene research has motivated sci-
entists to explore other 2D atomic based materials. Among
them, BN sheet has become a hotly pursued system as it
shares the same honeycomb lattice structure as graphene.
Using a chemical-solution-derived method starting from
single-crystalline hexagonal boron nitride, Han and co-
workers successfully synthesized BN monoatomic layer.3

Very recently, an efficient method to fabricate high-yield 2D
BN sheets has been developed by using a sonication-
centrifugation technique4 where milligram quantity of BN
sheets are achievable and ultimately pure BN sheets can be
obtained based on a highly pure precursor. The sheet thick-
ness can be adjusted by the centrifugation speed.

The advances in experimental synthesis of BN sheet have
led us to explore the properties of BN sheet by decorating its
surface. Although BN sheet has similar geometry as
graphene sheet, it can display different properties. For ex-
ample, unlike graphite, BN layers are stable under high tem-
perature up to 1000 K. BN sheet is semiconducting while
graphene sheet is metallic. In order to open a band gap in
graphene, surface modification such as hydrogenation is
needed. The resulting graphane sheet5,6 has a band gap of 4.5

eV which is tunable by modifying its surface with atoms
such as F.7 Similar decoration of BN sheet raises some inter-
esting questions: �1� since the BN sheet is already semicon-
ducting with a band gap of 4.7 eV, how would its band gap
change when hydrogenated or fluorinated? �2� When half of
the H atoms are removed from a fully hydrogenated
graphene sheet �graphane�, the resulting semihydrogenated
graphene sheet �graphone� becomes ferromagnetic,8 but it is
still nonmagnetic when semifluorinated. What would be the
magnetic properties of semihydrogenated or semifluorinated
BN sheet? Is it ferromagnetic, antiferromagnetic, or nonmag-
netic? �3� All C atoms in graphene sheet are equivalent with
covalent bonding between them. In contrast, B and N sites in
BN sheet are not equivalent. The charge transfer from B to N
permits the bonding between them to be more ionic, thus the
properties of semidecorated BN sheet will depend on which
sites are decorated with H and/or F. How would codecoration
of BN sheet with H on one side and F on the other side affect
its electronic and magnetic properties?

In this paper, we have made extensive studies of the elec-
tronic structure and magnetic properties of fully decorated
and semidecorated BN sheets using H and/or F atoms. We
show that for a fully hydrogenated BN sheet, the energy
band gap is reduced from that in pristine BN sheet. With
semidecoration on different sites, BN sheet can display fer-
romagnetic �FM� or antiferromagnetic �AF� properties. And
for semifluorinated BN sheet, contrary to what has been
found in the case of BN nanotube, FM and AF states are
nearly degenerated. In addition, the relative stability of FM
and AF states can be further modulated by applying external
strain.

II. METHODS

Our calculations are based on spin-polarized density-
functional theory �DFT� using generalized gradient approxi-
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mation �GGA� �Ref. 9� for exchange-correlation potential.
We have used Perdew-Burke-Ernzerhof �PBE� functional for
GGA as implemented in the Vienna ab initio Simulation
Package �VASP�.10,11 For the geometric and electronic struc-
tural calculations, a supercell consisting of fourfold unit cells
of h-BN sheet is used with a vacuum space of 15 Å between
two layers to avoid interactions between them. Pseudopoten-
tials with 2s22p1, 2s22p3, 1s1, and 2s22p5 valence electron
configurations, respectively, for B, N, H, and F atoms are
used. The Brillouin zone is represented by Monkhorst-Pack
special k-point mesh12 of 7�7�1. The energy cutoffs, con-
vergence in energy, and force are set to 400 eV, 1
�10−4 eV, and 0.01 eV /Å, respectively. Optimizations are
performed using conjugated gradient method and without
any symmetric constraints. The accuracy of our calculation
procedure is tested using pristine h-BN sheet. The optimized
bond length of B-N of 1.446 Å is in good agreement with
experimental value of 1.45 Å. The calculated band gap of
BN sheet of 4.71 eV �Fig. 1� is also in good agreement with
previous theoretical result.13

III. RESULTS AND DISCUSSION

In the following, we discuss the electronic structure and
properties of BN sheet when �1� fully hydrogenated, �2�
semihydrogenated, �3� semifluorinated, �4� under influence
of external strain, and �5� semihydrogenated and semifluori-
nated.

A. Fully hydrogenated BN sheet

Following the idea of hydrogenation of graphene sheet,
we first discuss the results for a fully hydrogenated h-BN
sheet �labeled as H-BN-H� which is very similar in geometry
to its carbon counterpart, graphane, as shown in Fig. 1�a�,
where B and N atoms become sp3 hybridized which distorts
the planar geometry forming a zigzag configuration as C
atoms do in graphane.6 The distance between B and N planes
is found to be 0.518 Å. The hydrogen atoms are adsorbed on
the top site of B and N atoms with H-B and H-N bond
lengths of 1.201 and 1.036 Å, respectively. The bond length
of H-B is a little larger than that of H-N bond length because
of the difference in bonding. Charge analysis with Wigner-
Seitz partition suggests that H atoms adsorbed on B and N
are both positively charged carrying charges of 0.012 and
0.129 electrons, respectively. To study the energetics of hy-
drogenation, we calculated the formation energy which is
defined as the energy difference between the hydrogenated
BN sheet, pristine BN sheet, and H2 molecules. We found
that, in contrast to the graphene sheet, the hydrogenation of
BN sheet is endothermic with energy of 0.195 eV/H.

The energy-band structure and partial density of state
�PDOS� of H-BN-H are plotted in Fig. 1�b�. It is found to be
nonmagnetic with a direct band gap of 3.33 eV, which is
lower than that in the pristine BN sheet, namely, 4.71 eV.
The valence-band maximum �VBM� and conduction-band
minimum �CBM� are both located at the � point in the re-
ciprocal space. Here we see some differences between fully
hydrogenated graphene and BN sheet. Hydrogenation opens
a band gap in the former while it reduces the band gap in the
latter. In fact, introduction of two H atoms introduces two
occupied energy bands �one in majority and one in minority
band sharing the same energy�. These are located just above
the valence band of pristine BN sheet. Accordingly, the band
gap of the system is reduced.

B. Semihydrogenated BN sheet

As stated in previous discussions, the hydrogenation of
BN sheet is an endothermic process. Once fully hydrogen-
ated, H can bind on B and N sites with the bond lengths of
1.201 and 1.036 Å, respectively, which are comparable to
the bond lengths of 1.23 and 1.03 Å for the corresponding
BH and NH dimers in free states.14 This suggests that H can
strongly bind to the distorted nonplanar BN sheet. This can
be understood by considering the fact that distortion changes
the bonding between B and N and enhances the reactivity.
Now the next question is: starting from the fully hydrogen-
ated BN sheet, can one find a way to remove hydrogen from
one side forming a semihydrogenated BN sheet? If so, how
will the properties change?

FIG. 1. �Color online� �a� Optimized structure of hydrogenated
BN nanosheet, H-BN-H. The dashed rhombus outlines the supercell
used in our calculation. �b� and �c� are calculated band structure and
PDOS of H-BN-H and pristine BN sheet, respectively. In PDOS,
dashed and solid curves correspond to s and p orbitals, respectively.
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In graphene sheet, all the C sites are equivalent. Thus,
when removing half of H atoms from a fully hydrogenated
graphene sheet �graphane�, we have only one option for the
semihydrogenated sheet.8 However, in BN sheet, B and N
sites are not equivalent and semihydrogenation can be ac-
complished by removing H from either B sites or N sites.
Which is the preferred configuration? To find this, we first
considered semihydrogenation by placing H on B sites, as
shown in Fig. 2. We label this case as H-BN.

The geometric optimization showed that when hydrogen
atoms on N sites are removed, the BN surface became less
distorted and the distance between B plane and N plane is
reduced to 0.266 Å. The H-B bond length is elongated to
1.305 Å, which is still comparable to the bond length of
1.23 Å of BH dimer in a free state.14 These results are simi-
lar to those found in graphane and graphone.8 In H-BN con-
figuration, we found that the N atoms possess about 1�B
magnetic moment, while B and H atoms carry very small
magnetic moments. To verify that the system is indeed mag-
netic, we calculated the total energies for three magnetic cou-

pling configurations between N atoms �Fig. 2�a��: �1� FM
coupling, �2� AF coupling, and �3� nonmagnetic �NM� cou-
pling. The results showed that the FM coupling between N
atoms is energetically lower than that in AF and NM con-
figurations by 0.153 and 0.158 eV, respectively. Since our
calculated supercell is based on four unit cells of BN sheet,
the energy differences are thus 38 and 40 meV per unit cell,
respectively. This indicates that the semihydrogenated H-BN
nanostructure exhibits FM coupling. The physics involved
can be described as the following: in pristine BN sheet, the
charge transfer from B to N and the orbital hybridization
make electrons paired and the system is nonmagnetic. The
2pz electrons of N atoms contribute to the highest occupied
VBM while 2pz electrons of B atoms contribute to lowest
unoccupied CBM. When semihydrogenated on B sites, B
atoms are covalently bonded with H atoms forming sp3 hy-
bridization and almost no charge transfer occurs from B to
N. Thus 2pz electrons on N atoms remain unpaired. The ex-
tended p-p interaction results in a long-range magnetic cou-
pling between 2p moments as found in graphone sheet.8

Conventionally, magnetic moment comes from unfilled d or
f orbitals of metallic atoms. Using mean-field theory and the
energy difference between FM and AF states, we can esti-
mate the Curie temperature of H-BN by the formula
�kBTc /2=EAF−EFM, where � is the dimension of the system
and kB is Boltzmann constant.15 Our estimated results are
293 and 440 K, depending on whether the system is treated
as three dimensional �3D� and 2D, respectively.

Band structure and PDOS are plotted in Fig. 2�c�. We find
that the system is half metallic where majority-spin state re-
mains as an indirect band-gap insulator with band gap of
5.05 eV, while minority-spin state is metallic. To visualize
the magnetic property clearly, we plotted the isosurface and a
two-dimensional slice of spin density �Fig. 2�d��. We see that
the magnetism on N atoms is mainly contributed by unsatur-
ated 2pz orbital, which is consistent with the results obtained
from PDOS. We find that one H atom adsorbed on B site
introduces one occupied energy band in majority channel as
well as one unoccupied energy band with slightly higher en-
ergy in the minority channel. The two energy bands are lo-
cated slightly above the highest occupied valence band of
pristine BN sheet. If the concentration of H atoms is in-
creased to the level of semihydrogenation, the new induced
occupied and unoccupied energy bands will be broadened
due to hybridization effect. They will collapse with each
other and give rise to half-metallic band structure.

For the semihydrogenation on N sites �denoted as H-NB�,
the optimized H-NB sheet shows that the distance between B
and N planes is 0.450 Å, which is larger than that of H-BN
case �0.266 Å� and smaller than that of H-BN-H case
�0.518 Å�. The H-N bond length of 1.083 Å is comparable
to the bond length of 1.03 Å in NH dimer in a free state.14

Since B atom has a valence configuration of 2s22p1, once N
sites are terminated with H, the charge transfer from B to N
is diminished, leaving 2p electron spin in B site unpaired. In
fact, we found that the unhydrogenated B atoms carried a
magnetic moment of about 0.75�B, while very small net
magnetic moment was found on H or N atoms. We computed
total energies for three magnetic configurations �FM, AF, and
NM�. The AF state is found to be energetically most stable.

FIG. 2. �Color online� Calculated results of H-BN. �a� Three
magnetic coupling states. �b� Optimized structure of the FM state.
�c� Calculated band structure and PDOS of H-BN in FM state. �d�
Isosurface �0.5 e / Ǻ3� and 2D slice of spin density ���−��� in FM
state.
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The FM and NM states are higher in energy than that of AF
state by 0.476 and 0.500 eV, respectively, corresponding to
119 and 125 meV per unit cell. These energy differences
include magnetic contribution from both exchange interac-
tion as well as from changes in geometry. We found that in
FM state, the H-N bond length is 1.071 Å, which is shorter
than that in the AF state. The energy of the H-NB in AF state
is higher than its isomer H-BN in its FM state by 1.36 eV,
suggesting that H-NB configuration is energetically less
stable than H-BN configuration.

The band structure and PDOS for the AF state of H-NB
are plotted in Fig. 3�c�, showing that the system is an indirect
band-gap semiconductor where band gap is reduced to 0.97
eV. Detailed analysis of PDOS reveals again that the mag-
netic moment on B atoms is due to the unsaturated 2p or-
bital, which is clearly shown in Fig. 3�d�. The system with H
atoms adsorbed on N atoms of BN sheet in AF state also
shows that some occupied �majority� and unoccupied �mi-
nority� energy bands are newly formed just under the con-
duction band �related to the electron occupation in the lowest
unoccupied conduction band arising from B 2p orbital of
pristine BN sheet�, which makes the system an n-type semi-
conductor.

C. Semifluorinated BN sheet

We see from above that the electronic and magnetic prop-
erties of BN sheet can be tuned by decorating B or N sites
with H atoms. In this section, we study the fluorination of
BN sheet. The motivations are twofold: �1� studies have al-
ready been carried out experimentally and theoretically on
fluorination of graphene,7,16 CNT,17–19 and fullerene
�C60F18,

20,21 C60F36,
22,23 C60F48,

23–25 C60F60,
26 C58F18 �Ref.

27��. It has been found that fluorination can be used to
change CNT from metallic to semiconducting10 or from non-
magnetic to magnetic.28 Therefore, it is highly desirable to
see if fluorination of BN sheet can induce some new effects.
�2� Hydrogenation of BN sheet is found to be endothermic.
One of the reasons is that the bonding in H2 is strong. Since
bonding in F2 is weaker than in H2, an interesting question
arises: is fluorination of BN sheet endothermic or exother-
mic? In this section, we discuss the effect of fluorination of
BN sheet on electronic and magnetic properties.

Because of weak binding between F and N atoms,29 we
only consider semifluorination of BN sheet in which F atoms
are attached to B atoms in BN �termed as F-BN� �Fig. 4�.
This structure may be synthesized in fluorine plasma envi-
ronment by protecting one side of BN sheet. In the optimized
geometric structures, the distance between B and N planes is
found to be 0.375 Å, and F-B bond length is 1.415 Å,
which is a little bit larger than the BF dimer bond length of
1.263 Å in a free state.14 In contrast to that found in hydro-
genation, fluorination is found to be exothermic and the for-
mation energy is 0.645 eV/F. Again, we found that the N
atoms carry a magnetic moment of about 1�B. Three mag-
netic states with their corresponding energies are given in
Fig. 4�a�, showing that the AF state is the most stable one
and lies 0.027 and 1.114 eV lower than FM and NM states,
respectively. Thus, the energy difference between AF and
FM states per unit cell is 7 meV. This energy is small and
comparable to that due to thermal fluctuation. Hence, we
conclude that the FM and AF states are nearly degenerate.
Their corresponding band structure and PDOS are plotted in
Fig. 4. We see that FM state is half metallic, where the ma-
jority channel remains insulating with a band gap of 6.57 eV,
and the minority channel is conducting. Analysis of PDOS
shows that the magnetism on N atoms is mainly contributed
by the unpaired 2pz orbital. This can be visualized from the
isosurface of spin density in Fig. 4�e�. The relevant mecha-
nism is similar to what we discussed in H-BN sheet. The
binding of F atoms on B sites make the 2p electrons on N
sites unpaired. We also found that when two F atoms are
introduced, two unoccupied energy bands are induced in the
minority-spin channel just slightly above the valence band.
When more F atoms are adsorbed, the system finally be-
comes half metallic.

For the AF state, the system becomes a direct band-gap
semiconductor with a small band gap of 0.63 eV. Just above
the valence band of pristine BN sheet, we note that there are
four induced energy bands in the conduction manifold �two
in majority and two in minority-spin channel�. A large band
gap exists above these two bands. The isosurface and two-
dimensional slice of spin density are plotted in Fig. 4�f�.

FIG. 3. �Color online� The legend is similar to that in Fig. 2
while results in �b�–�d� are for the AF state. �d� Yellow and gray
indicate the positive and negative values, respectively, in the isos-

urface �0.38 e / Ǻ3�.
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D. Applied stress on semifluorinated BN sheet

We found that magnetic properties of fluorinated BN
sheet are different from that in the fluorinated BN
nanotube.28 The latter has been found to be FM. To see if this
difference is due to strain caused by curvature effects on the
BN nanotube, we applied in-plane tensile and compressive
stresses in the fluorinated BN sheet. For the F-BN system
under tensile stress, the energy difference between AF and
FM states increases with higher tension and AF is always
more stable than FM state. But for the compressive stress on
F-BN, we found that the energy of FM state increases slower
than AF state and at 5% in-plane compression, FM state is
energetically more stable than AF state by 32 meV per unit
cell �Fig. 5�.

E. BN sheet codecorated with H and F

As we have seen from above that hydrogenation of BN
sheet is endothermic, but once the sheet is distorted, H can

easily bind on B or N sites. Also, we find that fluorination is
exothermic and can distort the sheet. Therefore, we can fur-
ther introduce H to the semifluorinated BN sheet forming a
codecorated sheet, where F atoms are attached to the B site
while H atoms are attached to the N sites �labeled as
F-BN-H, as shown in Fig. 6�.

The optimized F-B and H-N distances are shorter than
those in F-BN and H-NB sheets indicating that the bonding
is stronger than that in the systems discussed above. Conse-

FIG. 4. �Color online� Calculated results of F-BN. �a� Relative
energies for three magnetic coupling. �b� Structure of F-BN in AF
state. ��c� and �e�� calculated band structure, PDOS, as well as

isosurface �0.5 e / Ǻ3� and 2D slice of spin density of F-BN in FM
state. �d� and �f� are same as �c� and �e� but for AF state.

FIG. 5. Stability of magnetic state as a function of strain.

FIG. 6. �Color online� �a� Calculated geometric structure. �b�
Band structure and PDOS of F-BN-H. �c� The charge-density dif-
ference ��F-BN-H−�F−�BN−�H� of F-BN-H.
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quently, the distortion of the planar BN sheet is larger than
that in the F-BN and H-NB systems as can be seen from the
distance between B and N layers, which is calculated to be

0.548 Ǻ �Fig. 6�a��. The codecorated F-BN-H system is a
direct band-gap semiconductor with a band gap of 2.55 eV
which is smaller than those of pristine BN, or H-BN-H, but
much larger than those in H-NB �AF� and F-BN �AF� sheets.

What is more interesting is that codecoration using H and
F atoms can induce anisotropy in the system. The pristine
BN sheet is a two-dimensional isotropic system. When deco-
rated with F atom on B sites and H atom on N sites, the large
difference in the electron affinity of H and F makes the
charge distribution asymmetric; F atoms receive electrons
and become negatively charged on one side while H atoms
donate electrons and become positively charged on the other
side. This asymmetric charge distribution induced by the co-
decoration in BN sheet can be visualized from the electron-
density difference ��F-BN-H−�F−�BN−�H� shown in Fig. 6�c�.
One can take advantage of this asymmetric charge distribu-
tion to promote self-assembly through charge interactions.
Thus, the weakness of van der Waals interactions between
the pristine BN sheets can be overcome and synthesis of
more stable BN sheets by using linkers may be possible. One
may wonder if the stacking of multiple F-BN-H sheets would
only create HF-intercalated BN. We have found that the
former is lower in energy than the latter by 0.27 eV/HF,
suggesting that stacking is stable against intercalation.

From above, we can see that the codecorated BN sheet
with F and H on two sides becomes a two-dimensional Janus
anisotropic structure.30 Janus anisotropy has attracted grow-
ing interest because of its applications in molecular recogni-
tion, self-assembly, photonic crystals, sensors, drug delivery,
surfactants, solar cells, and display materials. We hope that
similar to Janus particles,31,32 two-dimensional Janus struc-
tures of F-BN-H sheet may find potential applications.

IV. CONCLUSIONS

We have systematically studied the modulation of elec-
tronic and magnetic properties through hydrogenation and/or

fluorination of BN sheet. In Table I, we summarize the re-
sults. The main conclusions are as follows. �1� Hydrogena-
tion is endothermic while fluorination is exothermic. �2� Our
calculations show that fully decorated systems are all direct
band-gap semiconductors. �3� In semidecorated systems,
H-BN, F-BN, and H-NB, the unsaturated N or B atoms carry
magnetic moments which are contributed mainly by 2pz or-
bital. H-BN and H-NB systems couple, respectively, ferro-
magnetically and antiferromagnetically. However, in F-BN
system, the ferromagnetic and antiferromagnetic states are
energetically nearly degenerate. �4� The induced energy band
is located above the valence band or below the conduction
band and reflects how electrons are transferred. For the
H-BN and F-BN in FM state, both the systems possess half-
metallic property with majority-spin channel being semicon-
ducting while minority-spin channel being metallic. These
are related to the extension of occupied and unoccupied en-
ergy bands above the valence band of pristine BN sheet. The
H-NB and F-BN systems in AF state behave as semiconduc-
tors with small energy gaps. �5� The in-plane strain can be
used to tune the relative stability of FM and AF configura-
tions of the F-BN system. �6� Codecoration with H and F
atoms can introduce anisotropy in charge distribution, which
can be used to facilitate self-assembly under an applied elec-
tric field, making it possible to overcome the weakness of
van der Waals interactions between the pristine BN sheets.
�7� All surface decorations of the BN sheet reduce the
energy-band gap displaying different behaviors from that in
the graphene sheet. The diverse properties of decorated BN
sheets have the potential for wider applications of 2D-based
materials and devices.
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