26,899 research outputs found

    Country Image, Perceived Product Quality and Purchase Intention: the Moderating Roles of Quality Warranty Certificate and Country-Image Transferred Strategies

    Full text link
    This article aims at researching on the relationship of country image and customer perception on product quality and purchasing intention in South Korean. Additionally, the moderating roles of product quality warranty and country image transferred strategies are also taken into investigation in this empirical research. In order to make a research on these areas, questionnaire forms were distributed by emails and sending hard copies to 350 target samples in South Korea including Koreans and foreigners who have been living in South Korea and 215 forms were returned back and analyzed by SPSS v.21. The results indicated that gender, age groups and nationalities can significantly influence consumers' perception on the relationship country image and product quality. Surprisingly, the image of origin country produced products does not really affect consumers' perceived product quality, but the image of manufacturing country has a strong and significant influence on consumers' perception in terms of product quality. More interestingly, country image transferred strategy is ineffective in altering consumers' psychological perceptions on country image and perceived product quality. Apart from this, product quality warranty is still workable for boosting consumers' confidence in consuming products in Korean context. Even though this empirical research was considerably and carefully implemented, there are still some significant limitations in practice. The limitations and suggestion are finally introduced and explained

    Modelling spatially regulated B-catenin dynamics & invasion in intestinal crypts

    Get PDF
    Experimental data (e.g., genetic lineage and cell population studies) on intestinal crypts reveal that regulatory features of crypt behavior, such as control via morphogen gradients, are remarkably well conserved among numerous organisms (e.g., from mouse and rat to human) and throughout the different regions of the small and large intestines. In this article, we construct a partial differential equation model of a single colonic crypt that describes the spatial distribution of Wnt pathway proteins along the crypt axis. The novelty of our continuum model is that it is based upon assumptions that can be directly related to processes at the cellular and subcellular scales. We use the model to predict how the distributions of Wnt pathway proteins are affected by mutations. The model is then extended to investigate how mutant cell populations can invade neighboring crypts. The model simulations suggest that cell crowding caused by increased proliferation and decreased cell loss may be sufficient for a mutant cell population to colonize a neighboring healthy crypt

    Comparison of satellite-derived sea surface temperatures with in situ skin measurements

    Get PDF
    Sea surface temperatures (SSTs), computed from sensor systems on the National Oceanographic and Atmospheric Administration (NOAA) polar-orbiting satellites, are compared with surface skin temperatures (from an infrared radiometer mounted on a ship) and subsurface temperature measurements. Three split window retrieval methods using channels 4 and 5 of the NOAA 7 advanced very high resolution radiometer (AVHRR) sensor were investigated. These methods were (1) using AVHRR alone, (2) using AVHRR with atmospheric temperature and water vapor profiles from the TIROS operational vertical sounder (TOVS), and (3) using AVHRR and data from the high-resolution infrared sounder (HIRS). TOVS sensors (including HIRS) are carried by the same satellite as the AVHRR and provide simultaneous corrections for the AVHRR-based SST estimates. The importance of scan angle correction to define the correct atmospheric path is discussed, and the improvement of SST retrievals using sensor combinations is demonstrated with satellite versus ship skin temperature mean differences ranging from 0.55° to 0.73°C for AVHRR alone, from -0.39°to 0.71°C for AVHRR plus TOVS, and from 0.22°to 0.33°C for AVHRR plus HIRS. The improved SST accuracy by AVHRR plus HIRS is due to additional correction for the atmospheric water vapor and temperature structures, made possible with some of the HIRS channels. Significant differences between ship skin and subsurface temperatures were observed, with the mean deviation being 0.2°C for a range of temperature differences between -0.25°and 0.6°C. © Copyright 1987 by the American Geophysical Union

    Fingerprints of Random Flows?

    Full text link
    We consider the patterns formed by small rod-like objects advected by a random flow in two dimensions. An exact solution indicates that their direction field is non-singular. However, we find from simulations that the direction field of the rods does appear to exhibit singularities. First, ` scar lines' emerge where the rods abruptly change direction by π\pi. Later, these scar lines become so narrow that they ` heal over' and disappear, but their ends remain as point singularities, which are of the same type as those seen in fingerprints. We give a theoretical explanation for these observations.Comment: 21 pages, 11 figure

    Exact dimer ground state of the two dimensional Heisenberg spin system SrCu_2(BO_3)_2

    Full text link
    The two dimensional Heisenberg model for SrCu_2(BO_3)_2 has the exact dimer ground state which was proven by Shastry and Sutherland almost twenty years ago. The critical value of the quantum phase transition from the dimer state to the N\'{e}el ordered state is determined. Analysis of the experimental data shows that SrCu_2(BO_3)_2 has the dimer ground state but is close to the transition point, which leads to the unusual temperature dependence of the susceptibility. Almost localized nature of the triplet excitations explains the plateaus observed in the magnetization curve.Comment: 4 pages, 5 figures, to appear in PR

    Escape Behavior of Quantum Two-Particle Systems with Coulomb Interactions

    Full text link
    Quantum escapes of two particles with Coulomb interactions from a confined one-dimensional region to a semi-infinite lead are discussed by the probability of particles remaining in the confined region, i.e. the survival probability, in comparison with one or two free particles. For free-particle systems the survival probability decays asymptotically in power as a function of time. On the other hand, for two-particle systems with Coulomb interactions it shows an exponential decay in time. A difference of escape behaviors between Bosons and Fermions is considered as quantum effects of identical two particles such as the Pauli exclusion principle. The exponential decay in the survival probability of interacting two particles is also discussed in a viewpoint of quantum chaos based on a distribution of energy level spacings.Comment: 10 pages, 7 figure

    Painlev\'{e} analysis of the coupled nonlinear Schr\"{o}dinger equation for polarized optical waves in an isotropic medium

    Full text link
    Using the Painlev\'{e} analysis, we investigate the integrability properties of a system of two coupled nonlinear Schr\"{o}dinger equations that describe the propagation of orthogonally polarized optical waves in an isotropic medium. Besides the well-known integrable vector nonlinear Schr\"{o}dinger equation, we show that there exist a new set of equations passing the Painlev\'{e} test where the self and cross phase modulational terms are of different magnitude. We introduce the Hirota bilinearization and the B\"{a}cklund transformation to obtain soliton solutions and prove integrability by making a change of variables. The conditions on the third-order susceptibility tensor χ(3)\chi^{(3)} imposed by these new integrable equations are explained

    Thermally induced instability of a doubly quantized vortex in a Bose-Einstein condensate

    Full text link
    We study the instability of a doubly quantized vortex topologically imprinted on 23^{23}Na condensate, as reported in recent experiment [Phys. Rev. Lett. \textbf{93}, 160406 (2004)]. We have performed numerical simulations using three-dimensional Gross-Pitaevskii equation with classical thermal noise. Splitting of a doubly quantized vortex turns out to be a process that is very sensitive to the presence of thermal atoms. We observe that even ve ry small thermal fluctuations, corresponding to 10 to 15% of thermal atoms, ca use the decay of doubly quantized vortex into two singly quantized vortices in tens of milliseconds. As in the experiment, the lifetime of doubly quantized vortex i s a monotonic function of the interaction strength.Comment: 4 pages, 5 figure
    • …
    corecore