147 research outputs found

    Nucleon Edm from Atomic Systems and Constraints on Supersymmetry Parameters

    Full text link
    The nucleon EDM is shown to be directly related to the EDM of atomic systems. From the observed EDM values of the atomic Hg system, the neutron EDM can be extracted, which gives a very stringent constraint on the supersymmetry parameters. It is also shown that the measurement of Nitrogen and Thallium atomic systems should provide important information on the flavor dependence of the quark EDM. We perform numerical analyses on the EDM of neutron, proton and electron in the minimal supersymmetric standard model with CP-violating phases. We demonstrate that the new limit on the neutron EDM extracted from atomic systems excludes a wide parameter region of supersymmetry breaking masses above 1 TeV, while the old limit excludes only a small mass region below 1 TeV.Comment: 10 pages, 7 figure file

    Chirality Selection in Open Flow Systems and in Polymerization

    Full text link
    As an attempt to understand the homochirality of organic molecules in life, a chemical reaction model is proposed where the production of chiral monomers from achiral substrate is catalyzed by the polymers of the same enatiomeric type. This system has to be open because in a closed system the enhanced production of chiral monomers by enzymes is compensated by the associated enhancement in back reaction, and the chiral symmetry is conserved. Open flow without cross inhibition is shown to lead to the chirality selection in a general model. In polymerization, the influx of substrate from the ambience and the efflux of chiral products for purposes other than the catalyst production make the system necessarily open. The chiral symmetry is found to be broken if the influx of substrate lies within a finite interval. As the efficiency of the enzyme increases, the maximum value of the enantiomeric excess approaches unity so that the chirality selection becomes complete.Comment: 8 pages, 4 figure

    Measurement of the electron's electric dipole moment using YbF molecules: methods and data analysis

    Full text link
    We recently reported a new measurement of the electron's electric dipole moment using YbF molecules [Nature 473, 493 (2011)]. Here, we give a more detailed description of the methods used to make this measurement, along with a fuller analysis of the data. We show how our methods isolate the electric dipole moment from imperfections in the experiment that might mimic it. We describe the systematic errors that we discovered, and the small corrections that we made to account for these. By making a set of additional measurements with greatly exaggerated experimental imperfections, we find upper bounds on possible uncorrected systematic errors which we use to determine the systematic uncertainty in the measurement. We also calculate the size of some systematic effects that have been important in previous electric dipole moment measurements, such as the motional magnetic field effect and the geometric phase, and show them to be negligibly small in the present experiment. Our result is consistent with an electric dipole moment of zero, so we provide upper bounds to its size at various confidence levels. Finally, we review the prospects for future improvements in the precision of the experiment.Comment: 35 pages, 15 figure

    Enhancement of the electric dipole moment of the electron in PbO

    Full text link
    The a(1) state of PbO can be used to measure the electric dipole moment of the electron d_e. We discuss a semiempirical model for this state, which yields an estimate of the effective electric field on the valence electrons in PbO. Our final result is an upper limit on the measurable energy shift, which is significantly larger than was anticipated earlier: 2∣Wd∣de≄2.4×1025Hz[deecm] 2|W_d|d_e \ge 2.4\times 10^{25} \textrm{Hz} [ \frac{d_e}{e \textrm{cm}} ].Comment: 4 pages, revtex4, no figures, submitted to PR

    The electron electric dipole moment enhancement factors of Rubidium and Caesium atoms

    Full text link
    The enhancement factors of the electric dipole moment (EDM) of the ground states of two paramagnetic atoms; rubidium (Rb) and caesium (Cs) which are sensitive to the electron EDM are computed using the relativistic coupled-cluster theory and our results are compared with the available calculations and measurements. The possibility of improving the limit for the electron EDM using the results of our present work is pointed out.Comment: AISAMP7 Conference paper, Accepted in Journal of Physics: Conference Series: 200

    Toroidal quadrupole transitions associated to collective rotational-vibrational motions of the nucleus

    Get PDF
    In the frame of the algebraic Riemann Rotational Model one computes the longitudinal, transverse and toroidal multipoles corresponding to the excitations of low-lying levels in the ground state band of several even-even nuclei by inelastic electron scattering (e,e'). Related to these transitions a new quantity, which accounts for the deviations from the Siegert theorem, is introduced. The intimate connection between the nuclear vorticity and the dynamic toroidal quadrupole moment is underlined. Inelastic differential cross-sections calculated at backscattering angles shows the dominancy of toroidal form-factors over a broad range of momentum transfer.Comment: 11 pages in LaTex, 3 figures available by fax or mail, accepted for publication in J.Phys.

    Symmetry-breaking in chiral polymerisation

    Get PDF
    We propose a model for chiral polymerisation and investigate its symmetric and asymmetric solutions. The model has a source species which decays into left- and right-handed types of monomer, each of which can polymerise to form homochiral chains; these chains are susceptible to `poisoning' by the opposite handed monomer. Homochiral polymers are assumed to influence the proportion of each type of monomer formed from the precursor. We show that for certain parameter values a positive feedback mechanism makes the symmetric steady-state solution unstable. The kinetics of polymer formation are then analysed in the case where the system starts from zero concentrations of monomer and chains. We show that following a long induction time, extremely large concentrations of polymers are formed for a short time, during this time an asymmetry introduced into the system by a random external perturbation may be massively amplified. The system then approaches one of the steady-state solutions described above.Comment: 26pages, 6 Figure

    Prospects for an electron electric dipole moment search in metastable ThO and ThF+^{\rm +}

    Full text link
    The observation of an electron electric dipole moment (eEDM) would have major ramifications for the standard model of physics. Polar molecules offer a near-ideal laboratory for such searches due to the large effective electric field (Feff{\bf F}_{\rm eff}), on order of tens of GV/cm that can be easily oriented in the lab frame. We present an improved method for simply and accurately determining Feff{\bf F}_{\rm eff}, in a heavy polar molecule, allowing for a quick determination of candidates for an eEDM experiment. We apply this method to ThO and ThF+^{\rm +}, both of which possess metastable 3Δ^3\Delta electronic states. The values of Feff{\bf F}_{\rm eff} in ThO and ThF+^{\rm +} are estimated to be 104 GV/cm and 90 GV/cm respectively, and are therefore two of the best known candidates for the eEDM search.Comment: Two column format submitted to PR

    Role of Present and Future Atomic Parity Violation Experiments in Precision Electroweak Tests

    Get PDF
    Recent reanalyses of the atomic physics effects on the weak charge in cesium have led to a value in much closer agreement with predictions of the Standard Model. We review precision electroweak tests, their implications for upper bounds on the mass of the Higgs boson, possible ways in which these bounds may be circumvented, and the requirements placed upon accuracy of future atomic parity violation experiments by these considerations.Comment: 10 pages, LaTeX, 1 figure, to be submitted to Physical Review D, new data on neutrino deep inelastic scattering include

    Atomic Parity Violation and Precision Electroweak Physics - An Updated Analysis

    Get PDF
    A new analysis of parity violation in atomic cesium has led to the improved value of the weak charge, QW(Cs)=−72.06±0.46Q_W({\rm Cs}) = -72.06 \pm 0.46. The implications of this result for constraining the Peskin-Takeuchi parameters S and T and for guiding searches for new Z bosons are discussed.Comment: 8 pages, LaTeX, 3 figures, Submitted to Physical Review D. Updated experimental inputs and references; clarification of notatio
    • 

    corecore