216 research outputs found

    Automatic construction of robust spherical harmonic subspaces

    Get PDF
    In this paper we propose a method to automatically recover a class specific low dimensional spherical harmonic basis from a set of in-the-wild facial images. We combine existing techniques for uncalibrated photometric stereo and low rank matrix decompositions in order to robustly recover a combined model of shape and identity. We build this basis without aid from a 3D model and show how it can be combined with recent efficient sparse facial feature localisation techniques to recover dense 3D facial shape. Unlike previous works in the area, our method is very efficient and is an order of magnitude faster to train, taking only a few minutes to build a model with over 2000 images. Furthermore, it can be used for real-time recovery of facial shape

    Learning the multilinear structure of visual data

    Get PDF
    Statistical decomposition methods are of paramount importance in discovering the modes of variations of visual data. Probably the most prominent linear decomposition method is the Principal Component Analysis (PCA), which discovers a single mode of variation in the data. However, in practice, visual data exhibit several modes of variations. For instance, the appearance of faces varies in identity, expression, pose etc. To extract these modes of variations from visual data, several supervised methods, such as the TensorFaces, that rely on multilinear (tensor) decomposition (e.g., Higher Order SVD) have been developed. The main drawbacks of such methods is that they require both labels regarding the modes of variations and the same number of samples under all modes of variations (e.g., the same face under different expressions, poses etc.). Therefore, their applicability is limited to well-organised data, usually captured in well-controlled conditions. In this paper, we propose the first general multilinear method, to the best of our knowledge, that discovers the multilinear structure of visual data in unsupervised setting. That is, without the presence of labels. We demonstrate the applicability of the proposed method in two applications, namely Shape from Shading (SfS) and expression transfer

    Multilevel approximate robust principal component analysis

    Get PDF
    Robust principal component analysis (RPCA) is currently the method of choice for recovering a low-rank matrix from sparse corruptions that are of unknown value and support by decomposing the observation matrix into low-rank and sparse matrices. RPCA has many applications including background subtraction, learning of robust subspaces from visual data, etc. Nevertheless, the application of SVD in each iteration of optimisation methods renders the application of RPCA challenging in cases when data is large. In this paper, we propose the first, to the best of our knowledge, multilevel approach for solving convex and non-convex RPCA models. The basic idea is to construct lower dimensional models and perform SVD on them instead of the original high dimensional problem. We show that the proposed approach gives a good approximate solution to the original problem for both convex and non-convex formulations, while being many times faster than original RPCA methods in several real world datasets

    Disentangling the modes of variation in unlabelled data

    Get PDF
    Statistical methods are of paramount importance in discovering the modes of variation in visual data. The Principal Component Analysis (PCA) is probably the most prominent method for extracting a single mode of variation in the data. However, in practice, visual data exhibit several modes of variations. For instance, the appearance of faces varies in identity, expression, pose etc. To extract these modes of variations from visual data, several supervised methods, such as the TensorFaces relying on multilinear (tensor) decomposition (e.g., Higher Order SVD) have been developed. The main drawbacks of such methods is that they require both labels regarding the modes of variations and the same number of samples under all modes of variations (e.g., the same face under different expressions, poses etc.). Therefore, their applicability is limited to well-organised data, usually captured in well-controlled conditions. In this paper, we propose a novel general multilinear matrix decomposition method that discovers the multilinear structure of possibly incomplete sets of visual data in unsupervised setting (i.e., without the presence of labels). We also propose extensions of the method with sparsity and low-rank constraints in order to handle noisy data, captured in unconstrained conditions. Besides that, a graph-regularised variant of the method is also developed in order to exploit available geometric or label information for some modes of variations. We demonstrate the applicability of the proposed method in several computer vision tasks, including Shape from Shading (SfS) (in the wild and with occlusion removal), expression transfer, and estimation of surface normals from images captured in the wild

    Face flow

    Get PDF
    In this paper, we propose a method for the robust and efficient computation of multi-frame optical flow in an expressive sequence of facial images. We formulate a novel energy minimisation problem for establishing dense correspondences between a neutral template and every frame of a sequence. We exploit the highly correlated nature of human expressions by representing dense facial motion using a deformation basis. Furthermore, we exploit the even higher correlation between deformations in a given input sequence by imposing a low-rank prior on the coefficients of the deformation basis, yielding temporally consistent optical flow. Our proposed model-based formulation, in conjunction with the inverse compositional strategy and low-rank matrix optimisation that we adopt, leads to a highly efficient algorithm for calculating facial flow. As experimental evaluation, we show quantitative experiments on a challenging novel benchmark of face sequences, with dense ground truth optical flow provided by motion capture data. We also provide qualitative results on a real sequence displaying fast motion and occlusions. Extensive quantitative and qualitative comparisons demonstrate that the proposed method outperforms state-of-the-art optical flow and dense non-rigid registration techniques, whilst running an order of magnitude faster

    Consumer confidence on heating oil prices : an empirical study of their relationship for European Union in a nonlinear framework

    Get PDF
    The present paper studies the EU consumer sentiment - heating oil stock prices relationship given the recent changes in the EU economy with the assistance of threshold cointegration. According to our findings, the existence of linearity against threshold cointegration is rejected for all the variables with the exception that of skewness, while the estimation of the threshold vector error correction model does not confirm the short-term dynamics in most cases. Having in mind that oil prices can affect economic activity in real and financial terms and is perceived as news by the consumers, the conclusion reached is in line with the existing literature, according to which consumer confidence is strongly affected by the news dissemination and by the signals of economic growth. The major practical implication of the study is the policy makers' acquisition with tools to create economic condition that improve consumer confidence and promotes economic growthpeer-reviewe

    Recovering joint and individual components in facial data

    Get PDF
    A set of images depicting faces with different expressions or in various ages consists of components that are shared across all images (i.e., joint components) and imparts to the depicted object the properties of human faces and individual components that are related to different expressions or age groups. Discovering the common (joint) and individual components in facial images is crucial for applications such as facial expression transfer. The problem is rather challenging when dealing with images captured in unconstrained conditions and thus are possibly contaminated by sparse non-Gaussian errors of large magnitude (i.e., sparse gross errors) and contain missing data. In this paper, we investigate the use of a method recently introduced in statistics, the so-called Joint and Individual Variance Explained (JIVE) method, for the robust recovery of joint and individual components in visual facial data consisting of an arbitrary number of views. Since, the JIVE is not robust to sparse gross errors, we propose alternatives, which are 1) robust to sparse gross, non-Gaussian noise, 2) able to automatically find the individual components rank, and 3) can handle missing data. We demonstrate the effectiveness of the proposed methods to several computer vision applications, namely facial expression synthesis and 2D and 3D face age progression in-the-wild

    Learning the multilinear structure of visual data

    Get PDF
    Statistical decomposition methods are of paramount im- portance in discovering the modes of variations of visual data. Probably the most prominent linear decomposition method is the Principal Component Analysis (PCA), which discovers a single mode of variation in the data. However, in practice, visual data exhibit several modes of variations. For instance, the appearance of faces varies in identity, ex- pression, pose etc. To extract these modes of variations from visual data, several supervised methods, such as the Ten- sorFaces, that rely on multilinear (tensor) decomposition (e.g., Higher Order SVD) have been developed. The main drawbacks of such methods is that they require both labels regarding the modes of variations and the same number of samples under all modes of variations (e.g., the same face under different expressions, poses etc.). Therefore, their ap- plicability is limited to well-organised data, usually cap- tured in well-controlled conditions. In this paper, we pro- pose the first general multilinear method, to the best of our knowledge, that discovers the multilinear structure of visual data in unsupervised setting. That is, without the presence of labels. We demonstrate the applicability of the proposed method in two applications, namely Shape from Shading (SfS) and expression transfer

    Disentangling the modes of variation in unlabelled data

    Get PDF
    Statistical methods are of paramount importance in discovering the modes of variation in visual data. The Principal Component Analysis (PCA) is probably the most prominent method for extracting a single mode of variation in the data. However, in practice, visual data exhibit several modes of variations. For instance, the appearance of faces varies in identity, expression, pose etc. To extract these modes of variations from visual data, several supervised methods, such as the TensorFaces relying on multilinear (tensor) decomposition (e.g., Higher Order SVD) have been developed. The main drawbacks of such methods is that they require both labels regarding the modes of variations and the same number of samples under all modes of variations (e.g., the same face under different expressions, poses etc.). Therefore, their applicability is limited to well-organised data, usually captured in well-controlled conditions. In this paper, we propose a novel general multilinear matrix decomposition method that discovers the multilinear structure of possibly incomplete sets of visual data in unsupervised setting (i.e., without the presence of labels). We also propose extensions of the method with sparsity and low-rank constraints in order to handle noisy data, captured in unconstrained conditions. Besides that, a graph-regularised variant of the method is also developed in order to exploit available geometric or label information for some modes of variations. We demonstrate the applicability of the proposed method in several computer vision tasks, including Shape from Shading (SfS) (in the wild and with occlusion removal), expression transfer, and estimation of surface normals from images captured in the wild
    corecore