192 research outputs found

    Direct observation of a magnetic field-induced Wigner crystal

    Full text link
    Eugene Wigner predicted long ago that when the Coulomb interactions between electrons become much stronger than their kinetic energy, electrons crystallize into a closely packed lattice. A variety of two-dimensional systems have shown evidence for Wigner crystals; however, a spontaneously formed classical or quantum Wigner crystal (WC) has never been directly visualized. Neither the identification of the WC symmetry nor direct investigation of its melting has been accomplished. Here we use high-resolution scanning tunneling microscopy (STM) measurements to directly image a magnetic field-induced electron WC in Bernal-stacked bilayer graphene (BLG), and examine its structural properties as a function of electron density, magnetic field, and temperature. At high fields and the lowest temperature, we observe a triangular lattice electron WC in the lowest Landau Level (LLL) of BLG. The WC possesses the expected lattice constant and is robust in a range of filling factors between ν∼\nu\sim 0.13 and ν∼\nu\sim 0.38 except near fillings where it competes with fractional quantum Hall (FQH) states. Increasing the density or temperature results in the melting of the WC into a liquid phase that is isotropic but has a modulated structure characterized by the WC's Bragg wavevector. At low magnetic fields, the WC unexpectedly transitions into an anisotropic stripe phase, which has been commonly anticipated to form in higher LLs. Analysis of individual lattice sites reveals signatures that may be related to the quantum zero-point motion of electrons in the WC lattice.Comment: 19 pages, 4 figure

    Fingerprints of Composite Fermion Lambda Levels in Scanning Tunneling Microscopy

    Full text link
    Composite fermion (CF) is a topological quasiparticle that emerges from a non-perturbative attachment of vortices to electrons in strongly correlated two-dimensional materials. Similar to non-interacting fermions that form Landau levels in a magnetic field, CFs can fill analogous ``Lambda'' levels, giving rise to the fractional quantum Hall (FQH) effect of electrons. Here, we show that Lambda levels can be directly visualized through the characteristic peak structure in the signal obtained via spectroscopy with the scanning tunneling microscopy (STM) on a FQH state. Complementary to transport, which probes low-energy properties of CFs, we show that \emph{high-energy} features in STM spectra can be interpreted in terms of Lambda levels. We numerically demonstrate that STM spectra can be accurately modeled using Jain's CF theory. Our results show that STM provides a powerful tool for revealing the anatomy of FQH states and identifying physics beyond the non-interacting CF paradigm.Comment: Six figures including supplementary material

    Young Adults View Smartphone Tracking Technologies for COVID-19 as Acceptable:The Case of Taiwan

    Get PDF
    Taiwan has been successful in controlling the spread of SARS-CoV-2 during the COVID-19 pandemic; however, without a vaccine the threat of a second outbreak remains. Young adults who show few to no symptoms when infected have been identified in many countries as driving the virus' spread through unidentifiable community transmission. Mobile tracking technologies register nearby contacts of a user and notifies them if one later tests positive to the virus, potentially solving this issue; however, the effectiveness of these technologies depends on their acceptance by the public. The current study assessed attitudes towards three tracking technologies (telecommunication network tracking, a government app, and Apple and Google's Bluetooth exposure notification system) among four samples of young Taiwanese adults (aged 25 years or younger). Using Bayesian methods, we find high acceptance for all three tracking technologies (>75%), with acceptance for each technology surpassing 90% if additional privacy measures were included. We consider the policy implications of these results for Taiwan and similar cultures

    Heat shock protein 70-mediated sensitization of cells to apoptosis by Carboxyl-Terminal Modulator Protein

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The serine/threonine protein kinase B (PKB/Akt) is involved in insulin signaling, cellular survival, and transformation. Carboxyl-terminal modulator protein (CTMP) has been identified as a novel PKB binding partner in a yeast two-hybrid screen, and appears to be a negative PKB regulator with tumor suppressor-like properties. In the present study we investigate novel mechanisms by which CTMP plays a role in apoptosis process.</p> <p>Results</p> <p>CTMP is localized to mitochondria. Furthermore, CTMP becomes phosphorylated following the treatment of cells with pervanadate, an insulin-mimetic. Two serine residues (Ser37 and Ser38) were identified as novel <it>in vivo </it>phosphorylation sites of CTMP. Association of CTMP and heat shock protein 70 (Hsp70) inhibits the formation of complexes containing apoptotic protease activating factor 1 and Hsp70. Overexpression of CTMP increased the sensitivity of cells to apoptosis, most likely due to the inhibition of Hsp70 function.</p> <p>Conclusion</p> <p>Our data suggest that phosphorylation on Ser37/Ser38 of CTMP is important for the prevention of mitochondrial localization of CTMP, eventually leading to cell death by binding to Hsp70. In addition to its role in PKB inhibition, CTMP may therefore play a key role in mitochondria-mediated apoptosis by localizing to mitochondria.</p

    Public-Private Partnership in Infrastructure Development - Case Studies from Asia and Europe

    Get PDF
    Development of infrastructure projects with private engagement through PPP has become one of the commonly adopted procurement strategies in developed and developing countries. All over the world where PPP procurement has been used in one form or another, the way in which it is carried out has become an important issue. Yet, there is no standard method of PPP implementation as each country adapts the process as appropriate for its own culture, economy, political climate and legal system. It is therefore essential that all parties likely to be involved have a common understanding of the principles underlying PPP structures and an appreciation of the key issues from the standpoints of the private as well as the public sectors. PPP projects with substantial private investments involve participation of stakeholders with diverse perspectives, which can lead to different perceptions on the viability of the project. The introduction chapter covers the general issues of PPP implementation and presents an overview of the use of PPP in the delivery of public infrastructure and services across the world. Following, in five case studies PPP projects from Asia and Europe are presented and reveal differences in the respective approaches of each country. The case studies analyze project objectives, scope and site as well as legal, contractual and financial framework under which the projects were realized. Each case study closes with a chapter discussing the different approaches and summarizing lessons learned

    A Novel 5-Enolpyruvylshikimate-3-Phosphate Synthase Shows High Glyphosate Tolerance in Escherichia coli and Tobacco Plants

    Get PDF
    A key enzyme in the shikimate pathway, 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) is the primary target of the broad-spectrum herbicide glyphosate. Identification of new aroA genes coding for EPSPS with a high level of glyphosate tolerance is essential for the development of glyphosate-tolerant crops. In the present study, the glyphosate tolerance of five bacterial aroA genes was evaluated in the E. coli aroA-defective strain ER2799 and in transgenic tobacco plants. All five aroA genes could complement the aroA-defective strain ER2799, and AM79 aroA showed the highest glyphosate tolerance. Although glyphosate treatment inhibited the growth of both WT and transgenic tobacco plants, transgenic plants expressing AM79 aroA tolerated higher concentration of glyphosate and had a higher fresh weight and survival rate than plants expressing other aroA genes. When treated with high concentration of glyphosate, lower shikimate content was detected in the leaves of transgenic plants expressing AM79 aroA than transgenic plants expressing other aroA genes. These results suggest that AM79 aroA could be a good candidate for the development of transgenic glyphosate-tolerant crops
    • …
    corecore