2,940 research outputs found

    Apparent horizon formation in the head-on collision of gyratons

    Get PDF
    The gyraton model describes a gravitational field of an object moving with the velocity of light which has finite energy and spin distributed during some finite time interval LL. A gyraton may be considered as a classical toy model for a quantum wave packet of high-energy particles with spin. In this paper we study a head-on collision of two gyratons and black hole formation in this process. The goal of this study is to understand the role of the gravitational spin-spin interaction in the process of mini-black-hole formation in particle collisions. To simplify the problem we consider several gyraton models with special profiles of the energy and spin density distribution. For these models we study the apparent horizon (AH) formation on the future edge of a spacetime region before interaction. We demonstrate that the AH forms only if the energy duration and the spin are smaller than some critical values, while the length of the spin distribution should be at least of the order of the system gravitational radius. We also study gravitational spin-spin interaction in the head-on collision of two gyratons under the assumption that the values of gyraton spins are small. We demonstrate that the metric in the interaction region for such gyratons depends on the relative helicities of incoming gyratons, and the collision of gyratons with oppositely directed spins allows the AH formation in a larger parameter region than in the collision of the gyratons with the same direction of spins. Some applications of the obtained results to the mini-black-hole production at the Large Hadron Collider in TeV gravity scenarios are briefly discussed.Comment: 44 pages, 21 figures, published versio

    Symmetrical Temperature-Chaos Effect with Positive and Negative Temperature Shifts in a Spin Glass

    Full text link
    The aging in a Heisenberg-like spin glass Ag(11 at% Mn) is investigated by measurements of the zero field cooled magnetic relaxation at a constant temperature after small temperature shifts ΔT/Tg<0.012|\Delta T/T_g| < 0.012. A crossover from fully accumulative to non-accumulative aging is observed, and by converting time scales to length scales using the logarithmic growth law of the droplet model, we find a quantitative evidence that positive and negative temperature shifts cause an equivalent restart of aging (rejuvenation) in terms of dynamical length scales. This result supports the existence of a unique overlap length between a pair of equilibrium states in the spin glass system.Comment: 4 page

    Absolute Transition Probabilities of Lines in the Spectra of Astrophysical Atoms, Molecules, and Ions

    Get PDF
    Progress in the investigation of absolute transition probabilities (A-values or F values) for ultraviolet lines is reported. A radio frequency ion trap was used for measurement of transition probabilities for intersystem lines seen in astronomical spectra. The intersystem line at 2670 A in Al II, which is seen in pre-main sequence stars and symbiotic stars, was studied

    Temperature Chaos and Bond Chaos in the Edwards-Anderson Ising Spin Glass : Domain-Wall Free-Energy Measurements

    Get PDF
    Domain-wall free-energy δF\delta F, entropy δS\delta S, and the correlation function, CtempC_{\rm temp}, of δF\delta F are measured independently in the four-dimensional ±J\pm J Edwards-Anderson (EA) Ising spin glass. The stiffness exponent θ\theta, the fractal dimension of domain walls dsd_{\rm s} and the chaos exponent ζ\zeta are extracted from the finite-size scaling analysis of δF\delta F, δS\delta S and CtempC_{\rm temp} respectively well inside the spin-glass phase. The three exponents are confirmed to satisfy the scaling relation ζ=ds/2θ\zeta=d_{\rm s}/2-\theta derived by the droplet theory within our numerical accuracy. We also study bond chaos induced by random variation of bonds, and find that the bond and temperature perturbations yield the universal chaos effects described by a common scaling function and the chaos exponent. These results strongly support the appropriateness of the droplet theory for the description of chaos effect in the EA Ising spin glasses.Comment: 4 pages, 6 figures; The title, the abstract and the text are changed slightl

    Time evolution of a thin black ring via Hawking radiation

    Full text link
    Black objects lose their mass and angular momenta through evaporation by Hawking radiation, and the investigation of their time evolution has a long history. In this paper, we study this problem for a five-dimensional doubly spinning black ring. The black ring is assumed to emit only massless scalar particles. We consider a thin black ring with a small thickness parameter, λ1\lambda\ll 1, which can be approximated by a boosted Kerr string locally. We show that a thin black ring evaporates with fixing its thickness parameter λ\lambda. Further, in the case of an Emparan-Reall black ring, we derive analytic formulas for the time evolution, which has one parameter to be evaluated numerically. We find that the lifetime of a thin black ring is shorter by a factor of O(λ2)O(\lambda^2) compared to a five-dimensional Schwarzschild black hole with the same initial mass. We also study detailed properties of the Hawking radiation from the thin black ring, including the energy and angular spectra of emitted particles.Comment: 28 pages, 6 figure

    Black ring formation in particle systems

    Full text link
    It is known that the formation of apparent horizons with non-spherical topology is possible in higher-dimensional spacetimes. One of these is the black ring horizon with S1×SD3S^1\times S^{D-3} topology where DD is the spacetime dimension number. In this paper, we investigate the black ring horizon formation in systems with nn-particles. We analyze two kinds of system: the high-energy nn-particle system and the momentarily-static nn-black-hole initial data. In the high-energy particle system, we prove that the black ring horizon does not exist at the instant of collision for any nn. But there remains a possibility that the black ring forms after the collision and this result is not sufficient. Because calculating the metric of this system after the collision is difficult, we consider the momentarily-static nn-black-hole initial data that can be regarded as a simplified nn-particle model and numerically solve the black ring horizon that surrounds all the particles. Our results show that there is the minimum particle number that is necessary for the black ring formation and this number depends on DD. Although many particle number is required in five-dimensions, n=4n=4 is sufficient for the black ring formation in the D7D\ge 7 cases. The black ring formation becomes easier for larger DD. We provide a plausible physical interpretation of our results and discuss the validity of Ida and Nakao's conjecture for the horizon formation in higher-dimensions. Finally we briefly discuss the probable methods of producing the black rings in accelerators.Comment: 26 pages, 7 figure

    Improved analysis of black hole formation in high-energy particle collisions

    Full text link
    We investigate formation of an apparent horizon (AH) in high-energy particle collisions in four- and higher-dimensional general relativity, motivated by TeV-scale gravity scenarios. The goal is to estimate the prefactor in the geometric cross section formula for the black hole production. We numerically construct AHs on the future light cone of the collision plane. Since this slice lies to the future of the slice used previously by Eardley and Giddings (gr-qc/0201034) and by one of us and Nambu (gr-qc/0209003), we are able to improve the prefactor estimates. The black hole production cross section increases by 40-70% in the higher-dimensional cases, indicating larger black hole production rates in future-planned accelerators than previously estimated. We also determine the mass and the angular momentum of the final black hole state, as allowed by the area theorem.Comment: 28 pages, 14 figures, references and minor comments adde
    corecore