research

Temperature Chaos and Bond Chaos in the Edwards-Anderson Ising Spin Glass : Domain-Wall Free-Energy Measurements

Abstract

Domain-wall free-energy δF\delta F, entropy δS\delta S, and the correlation function, CtempC_{\rm temp}, of δF\delta F are measured independently in the four-dimensional ±J\pm J Edwards-Anderson (EA) Ising spin glass. The stiffness exponent θ\theta, the fractal dimension of domain walls dsd_{\rm s} and the chaos exponent ζ\zeta are extracted from the finite-size scaling analysis of δF\delta F, δS\delta S and CtempC_{\rm temp} respectively well inside the spin-glass phase. The three exponents are confirmed to satisfy the scaling relation ζ=ds/2θ\zeta=d_{\rm s}/2-\theta derived by the droplet theory within our numerical accuracy. We also study bond chaos induced by random variation of bonds, and find that the bond and temperature perturbations yield the universal chaos effects described by a common scaling function and the chaos exponent. These results strongly support the appropriateness of the droplet theory for the description of chaos effect in the EA Ising spin glasses.Comment: 4 pages, 6 figures; The title, the abstract and the text are changed slightl

    Similar works