21,535 research outputs found

    Astrophysical constraints on the proton-to-electron mass ratio with FAST

    Full text link
    That the laws of physics are the same at all times and places throughout the Universe is one of the basic assumptions of physics. Astronomical observations provide the only means to test this basic assumption on cosmological time and distance scales. The possibility of variations in the dimensionless physical constant {\mu} - the proton-to-electron mass ratio, can be tested by comparing astronomical measurements of the rest frequency of certain spectral lines at radio wavelengths with laboratory determinations. Different types of molecular transitions have different dependencies on {\mu} and so observations of two or more spectral lines towards the same astronomical source can be used to test whether there is any evidence for either temporal or spatial changes in the physical fundamental constants. {\mu} will change if the relative strength of the strong nuclear force compared to the electromagnetic force varies. Theoretical studies have shown that the rotational transitions of some molecules which have transitions in the frequency range that will be covered by FAST (e.g., CH3OH, OH and CH) are sensitive to changes in {\mu}. A number of studies looking for possible variations in {\mu} have been undertaken with existing telescopes, however, the greater sensitivity of FAST means it will open new opportunities to significantly improve upon measurements made to date. In this paper, we discuss which molecular transitions and sources (both in the Galaxy and external galaxies) are likely targets for providing improved constraints on {\mu} with FAST

    Interference detection and correction applied to incoherent-scatter radar power spectrum measurement

    Get PDF
    A median filter based interference detection and correction technique is evaluated and the method applied to the Arecibo incoherent scatter radar D-region ionospheric power spectrum is discussed. The method can be extended to other kinds of data when the statistics involved in the process are still valid

    Effects of fiber/matrix interactions on the properties of graphite/epoxy composites

    Get PDF
    A state-of-the-art literature review of the interactions between fibers and resin within graphite epoxy composite materials was performed. Emphasis centered on: adhesion theory; wetting characteristics of carbon fiber; load transfer mechanisms; methods to evaluate and measure interfacial bond strengths; environmental influence at the interface; and the effect of the interface/interphase on composite performance, with particular attention to impact toughness. In conjunction with the literature review, efforts were made to design experiments to study the wetting behavior of carbon fibers with various finish variants and their effect on adhesion joint strength. The properties of composites with various fiber finishes were measured and compared to the base-line properties of a control. It was shown that by tailoring the interphase properties, a 30% increase in impact toughness was achieved without loss of mechanical properties at both room and elevated temperatures
    corecore