3,311 research outputs found
Potential field cellular automata model for pedestrian flow
This paper proposes a cellular automata model of pedestrian flow that defines a cost potential field, which takes into account the costs of travel time and discomfort, for a pedestrian to move to an empty neighboring cell. The formulation is based on a reconstruction of the density distribution and the underlying physics, including the rule for resolving conflicts, which is comparable to that in the floor field cellular automaton model. However, we assume that each pedestrian is familiar with the surroundings, thereby minimizing his or her instantaneous cost. This, in turn, helps reduce the randomness in selecting a target cell, which improves the existing cellular automata modelings, together with the computational efficiency. In the presence of two pedestrian groups, which are distinguished by their destinations, the cost distribution for each group is magnified due to the strong interaction between the two groups. As a typical phenomenon, the formation of lanes in the counter flow is reproduced. © 2012 American Physical Society.published_or_final_versio
General study on piezoelectric transformer
Author name used in this publication: Cheng K. W. E.Author name used in this publication: Kwok K. W.Power Electronics Research Center, Department of Electrical EngineeringAuthor name used in this publication: Chan H.Refereed conference paper2004-2005 > Academic research: refereed > Refereed conference paperVersion of RecordPublishe
Large-Eddy Simulation of Flow and Pollutant Transport in Urban Street Canyons with Ground Heating
Our study employed large-eddy simulation (LES) based on a one-equation subgrid-scale model to investigate the flow field and pollutant dispersion characteristics inside urban street canyons. Unstable thermal stratification was produced by heating the ground of the street canyon. Using the Boussinesq approximation, thermal buoyancy forces were taken into account in both the Navier–Stokes equations and the transport equation for subgrid-scale turbulent kinetic energy (TKE). The LESs were validated against experimental data obtained in wind-tunnel studies before the model was applied to study the detailed turbulence, temperature, and pollutant dispersion characteristics in the street canyon of aspect ratio 1. The effects of different Richardson numbers (Ri) were investigated. The ground heating significantly enhanced mean flow, turbulence, and pollutant flux inside the street canyon, but weakened the shear at the roof level. The mean flow was observed to be no longer isolated from the free stream and fresh air could be entrained into the street canyon at the roof-level leeward corner. Weighed against higher temperature, the ground heating facilitated pollutant removal from the street canyon.Singapore-MIT Alliance for Research and Technology. Center for Environmental Sensing and Monitorin
Initial validation of Chinese Pain Assessment in Advanced Dementia Scale (C-PAINAD)
2007-2008 > Academic research: refereed > Publication in refereed journalVersion of RecordPublishe
Observation of CR Anisotropy with ARGO-YBJ
The measurement of the anisotropies of cosmic ray arrival direction provides
important informations on the propagation mechanisms and on the identification
of their sources. In this paper we report the observation of anisotropy regions
at different angular scales. In particular, the observation of a possible
anisotropy on scales between 10 and 30
suggests the presence of unknown features of the magnetic fields the charged
cosmic rays propagate through, as well as potential contributions of nearby
sources to the total flux of cosmic rays. Evidence of new weaker few-degree
excesses throughout the sky region R.A. is
reported for the first time.Comment: Talk given at 12th TAUP Conference 2011, 5-9 September 2011, Munich,
German
Antisense epidermal growth factor receptor RNA transfection in human glioblastoma cells down-regulates telomerase activity and telomere length
Epidermal growth factor receptor is overexpressed and/or amplified in up to 50% of glioblastomas, suggesting an important role of this gene in glial tumorigenesis and progression. In the present study we demonstrated that epidermal growth factor receptor is involved in regulation of telomerase activity in glioblastoma. Antisense-epidermal growth factor receptor approach was used to inhibit epidermal growth factor receptor expression of glioblastoma U87MG cells. Telomerase activity in antisense-epidermal growth factor receptor cells decreased by up to 54 folds compared with control cells. Moreover, the telomere lengths of antisense-epidermal growth factor receptor cells were shortened. In addition, the tumorigenicity of antisense-epidermal growth factor receptor cells was significantly inhibited. Taken together, there were strong correlations between tumorigenicity and epidermal growth factor receptor expression levels, and between tumorigenicity and telomerase activity. These results provide evidence that epidermal growth factor receptor plays an important role in the regulation of telomerase activity of glioma cells. Our findings provide new insights into both the biological functions of epidermal growth factor receptor and the regulation of telomerase activity. The inhibition of telomerase activity triggered by antisense-epidermal growth factor receptor treatment may reflect yet another mechanism of antisense-epidermal growth factor receptor approach in tumour suppression
Towards quantum computing with single atoms and optical cavities on atom chips
We report on recent developments in the integration of optical
microresonators into atom chips and describe some fabrication and
implementation challenges. We also review theoretical proposals for quantum
computing with single atoms based on the observation of photons leaking through
the cavity mirrors. The use of measurements to generate entanglement can result
in simpler, more robust and scalable quantum computing architectures. Indeed,
we show that quantum computing with atom-cavity systems is feasible even in the
presence of relatively large spontaneous decay rates and finite photon detector
efficiencies.Comment: 14 pages, 6 figure
Two chemically similar stellar overdensities on opposite sides of the plane of the Galaxy
Our Galaxy is thought to have undergone an active evolutionary history
dominated by star formation, the accretion of cold gas, and, in particular,
mergers up to 10 gigayear ago. The stellar halo reveals rich fossil evidence of
these interactions in the form of stellar streams, substructures, and
chemically distinct stellar components. The impact of dwarf galaxy mergers on
the content and morphology of the Galactic disk is still being explored. Recent
studies have identified kinematically distinct stellar substructures and moving
groups, which may have extragalactic origin. However, there is mounting
evidence that stellar overdensities at the outer disk/halo interface could have
been caused by the interaction of a dwarf galaxy with the disk. Here we report
detailed spectroscopic analysis of 14 stars drawn from two stellar
overdensities, each lying about 5 kiloparsecs above and below the Galactic
plane - locations suggestive of association with the stellar halo. However, we
find that the chemical compositions of these stars are almost identical, both
within and between these groups, and closely match the abundance patterns of
the Milky Way disk stars. This study hence provides compelling evidence that
these stars originate from the disk and the overdensities they are part of were
created by tidal interactions of the disk with passing or merging dwarf
galaxies.Comment: accepted for publication in Natur
- …