885 research outputs found

    Functional connectivity in relation to motor performance and recovery after stroke.

    Get PDF
    Plasticity after stroke has traditionally been studied by observing changes only in the spatial distribution and laterality of focal brain activation during affected limb movement. However, neural reorganization is multifaceted and our understanding may be enhanced by examining dynamics of activity within large-scale networks involved in sensorimotor control of the limbs. Here, we review functional connectivity as a promising means of assessing the consequences of a stroke lesion on the transfer of activity within large-scale neural networks. We first provide a brief overview of techniques used to assess functional connectivity in subjects with stroke. Next, we review task-related and resting-state functional connectivity studies that demonstrate a lesion-induced disruption of neural networks, the relationship of the extent of this disruption with motor performance, and the potential for network reorganization in the presence of a stroke lesion. We conclude with suggestions for future research and theories that may enhance the interpretation of changing functional connectivity. Overall findings suggest that a network level assessment provides a useful framework to examine brain reorganization and to potentially better predict behavioral outcomes following stroke

    Age-related differences in motor skill transfer with brief memory reactivation

    Get PDF
    Motor memories can be strengthened through online practice and offline consolidation. Offline consolidation involves the stabilization of memory traces in post-practice periods. Following initial consolidation of a motor memory, subsequent practice of the motor skill can lead to reactivation and reconsolidation of the memory trace. The length of motor memory reactivation may influence motor learning outcomes; for example, brief, as opposed to long, practice of a previously learned motor skill appears to optimize intermanual transfer in healthy young adults. However, the influence of aging on reactivation-based motor learning has been scarcely explored. Here, the effects of brief and long motor memory reactivation schedules on the retention and intermanual transfer of a visuomotor tracing task are explored in healthy older adults. Forty older adults practiced a virtual star-tracing task either three ( brief reactivation ) or ten ( long reactivation ) times per session over a two-week period. Comparison with a previously reported group of younger adults revealed significant age-related differences in the effect of the motor memory reactivation schedule on the intermanual transfer of the motor task. In older adults, unlike younger adults, no significant between-group differences were found by practice condition in the speed, accuracy, or skill of intermanual task transfer. That is, motor task transfer in healthy younger, but not older, adults appears to benefit from brief memory reactivation. These results support the use of age-specific motor training approaches and may inform motor practice scheduling, with possible implications for physical rehabilitation, sport, and music

    Drag and inertia coefficients for horizontally submerged rectangular cylinders in waves and currents

    Get PDF
    The results of an experimental investigation carried out to measure combined wave and current loads on horizontally submerged square and rectangular cylinders are reported in this paper. The wave and current induced forces on a section of the cylinders with breadth-depth (aspect) ratios equal to 1, 0.5, and 0.75 are measured in a wave tank. The maximum value of Keulegan-Carpenter (KC) number obtained in waves alone is about 5 and Reynolds (Re) number ranged from 6.3976103 to 1.186105. The drag (CD) and inertia (CM) coefficients for each cylinder are evaluated using measured sectional wave forces and particle kinematics calculated from linear wave theory. The values of CD and CM obtained for waves alone have already been reported (Venugopal, V., Varyani, K. S., and Barltrop, N. D. P. Wave force coefficients for horizontally submerged rectangular cylinders. Ocean Engineering, 2006, 33, 11-12, 1669-1704) and the coefficients derived in combined waves and currents are presented here. The results indicate that both drag and inertia coefficients are strongly affected by the presenceof the current and show different trends for different cylinders. The values of the vertical component inertia coefficients (CMY) in waves and currents are generally smaller than the inertia coefficients obtained in waves alone, irrespective of the current's magnitude and direction. The results also illustrate the effect of a cylinder's aspect ratio on force coefficients. This study will be useful in the design of offshore structures whose columns and caissons are rectangular sections

    Validity of the Working Alliance Inventory Within Child Protection Services

    Get PDF
    The Working Alliance Inventory remains a widely studied measure of quality of therapeutic relationships between the practitioner and client. No prior study has examined the psychometrics and validity of the Working Alliance Inventory–Short (WAI-S) in a sample of families, social workers, and trained observers within child protection services. Surveys were completed by 130 families, social workers concerning 274 cases, and observers following 165 home visits during the first wave of data collected from a randomized controlled trial of child protection services. Confirmatory factor analyses were conducted on three versions of the WAI-S and demonstrated moderate to good model fit. Convergent construct validity was found with other standardized measures. Results support the use of the WAI-S during in child protection services practice and research. Future research into family engagement in child protection social work services should focus on the working relationship

    Electronic structure, phase stability and chemical bonding in Th2_2Al and Th2_2AlH4_4

    Full text link
    We present the results of theoretical investigation on the electronic structure, bonding nature and ground state properties of Th2_2Al and Th2_2AlH4_4 using generalized-gradient-corrected first-principles full-potential density-functional calculations. Th2_2AlH4_4 has been reported to violate the "2 \AA rule" of H-H separation in hydrides. From our total energy as well as force-minimization calculations, we found a shortest H-H separation of 1.95 {\AA} in accordance with recent high resolution powder neutron diffraction experiments. When the Th2_2Al matrix is hydrogenated, the volume expansion is highly anisotropic, which is quite opposite to other hydrides having the same crystal structure. The bonding nature of these materials are analyzed from the density of states, crystal-orbital Hamiltonian population and valence-charge-density analyses. Our calculation predicts different nature of bonding for the H atoms along aa and cc. The strongest bonding in Th2_2AlH4_4 is between Th and H along cc which form dumb-bell shaped H-Th-H subunits. Due to this strong covalent interaction there is very small amount of electrons present between H atoms along cc which makes repulsive interaction between the H atoms smaller and this is the precise reason why the 2 {\AA} rule is violated. The large difference in the interatomic distances between the interstitial region where one can accommodate H in the acac and abab planes along with the strong covalent interaction between Th and H are the main reasons for highly anisotropic volume expansion on hydrogenation of Th2_2Al.Comment: 14 pages, 9 figure

    Energetic charged particle fluxes relevant to Ganymede's polar region

    Get PDF
    The JEDI instrument made measurements of energetic charged particles near Ganymede during a close encounter with that moon. Here we find ion flux levels are similar close to Ganymede itself but outside its magnetosphere and on near wake and open field lines. But energetic electron flux levels are more than a factor of 2 lower on polar and near-wake field lines than on nearby Jovian field lines at all energies reported here. Flux levels are relevant to the weathering of the surface, particularly processes that affect the distribution of ice, since surface brightness has been linked to the open-closed field line boundary. For this reason, we estimate the sputtering rates expected in the polar regions due to energetic heavy ions. Other rates, such as those related to radiolysis by plasma and particles that can reach the surface, need to be added to complete the picture of charged particle weathering

    The Energetic Particle Detector (EPD) Investigation and the Energetic Ion Spectrometer (EIS) for the Magnetospheric Multiscale (MMS) Mission

    Get PDF
    Abstract The Energetic Particle Detector (EPD) Investigation is one of 5 fields-and-particles investigations on the Magnetospheric Multiscale (MMS) mission. MMS comprises 4 spacecraft flying in close formation in highly elliptical, near-Earth-equatorial orbits targeting understanding of the fundamental physics of the important physical process called magnetic reconnection using Earth’s magnetosphere as a plasma laboratory. EPD comprises two sensor types, the Energetic Ion Spectrometer (EIS) with one instrument on each of the 4 spacecraft, and the Fly’s Eye Energetic Particle Spectrometer (FEEPS) with 2 instruments on each of the 4 spacecraft. EIS measures energetic ion energy, angle and elemental compositional distributions from a required low energy limit of 20 keV for protons and 45 keV for oxygen ions, up to \u3e0.5 MeV (with capabilities to measure up to \u3e1 MeV). FEEPS measures instantaneous all sky images of energetic electrons from 25 keV to \u3e0.5 MeV, and also measures total ion energy distributions from 45 keV to \u3e0.5 MeV to be used in conjunction with EIS to measure all sky ion distributions. In this report we describe the EPD investigation and the details of the EIS sensor. Specifically we describe EPD-level science objectives, the science and measurement requirements, and the challenges that the EPD team had in meeting these requirements. Here we also describe the design and operation of the EIS instruments, their calibrated performances, and the EIS in-flight and ground operations. Blake et al. (The Flys Eye Energetic Particle Spectrometer (FEEPS) contribution to the Energetic Particle Detector (EPD) investigation of the Magnetospheric Magnetoscale (MMS) Mission, this issue) describe the design and operation of the FEEPS instruments, their calibrated performances, and the FEEPS in-flight and ground operations. The MMS spacecraft will launch in early 2015, and over its 2-year mission will provide comprehensive measurements of magnetic reconnection at Earth’s magnetopause during the 18 months that comprise orbital phase 1, and magnetic reconnection within Earth’s magnetotail during the about 6 months that comprise orbital phase 2

    Age-Related Differences in Arm and Trunk Responses to First and Repeated Exposure to Laterally Induced Imbalances

    Get PDF
    The objective of this study was to examine age-related differences in arm and trunk responses during first and repeated step induced balance perturbations. Young and older adults received 10 trials of unpredictable lateral platform translations. Outcomes included maximum arm and trunk displacement within 1 s of perturbation and at first foot lift off (FFLO), arm and neck muscle activity as recorded using electromyography (EMG), initial step type, balance confidence, and percentage of harness-assisted trials. Compared to young adults, older adults demonstrated greater arm and trunk angular displacements during the first trial, which were present at FFLO and negatively associated with balance confidence. Unlike young adults, recovery steps in older adults were directed towards the fall with a narrowed base of support. Over repeated trials, rapid habituation of first-trial responses of bilateral arm and trunk displacement and EMG amplitude was demonstrated in young adults, but was absent or limited in older adults. Older adults also relied more on harness assistance during balance recovery. Exaggerated arm and trunk responses to sudden lateral balance perturbations in older adults appear to influence step type and balance recovery. Associations of these persistently amplified movements with an increased reliance on harness assistance suggest that training to reduce these deficits could have positive effects in older adults with and without neurological disorders
    • …
    corecore