18 research outputs found

    Incidental cardiac findings on computed tomography imaging of the thorax

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Investigation of pulmonary pathology with computed tomography also allows visualisation of the heart and major vessels. We sought to explore whether clinically relevant cardiac pathology could be identified on computed tomography pulmonary angiograms (CTPA) requested for the exclusion of pulmonary embolism (PE). 100 consecutive CT contrast-enhanced pulmonary angiograms carried out for exclusion of PE at a single centre were assessed retrospectively by two cardiologists.</p> <p>Findings</p> <p>Evidence of PE was reported in 5% of scans. Incidental cardiac findings included: aortic wall calcification (54%), coronary calcification (46%), cardiomegaly (41%), atrial dilatation (18%), mitral annulus calcification (15%), right ventricular dilatation (11%), aortic dilatation (8%) and right ventricular thrombus (1%). Apart from 3 (3%) reports describing cardiomegaly, no other cardiac findings were described in radiologists' reports. Other reported pulmonary abnormalities included: lung nodules (14%), lobar collapse/consolidation (8%), pleural effusion (2%), lobar collapse/consolidation (8%), emphysema (6%) and pleural calcification (4%).</p> <p>Conclusions</p> <p>CTPAs requested for the exclusion of PE have a high yield of cardiac abnormalities. Although these abnormalities may not have implications for acute clinical management, they may, nevertheless, be important in long-term care.</p

    Review of journal of cardiovascular magnetic resonance 2010

    Get PDF
    There were 75 articles published in the Journal of Cardiovascular Magnetic Resonance (JCMR) in 2010, which is a 34% increase in the number of articles since 2009. The quality of the submissions continues to increase, and the editors were delighted with the recent announcement of the JCMR Impact Factor of 4.33 which showed a 90% increase since last year. Our acceptance rate is approximately 30%, but has been falling as the number of articles being submitted has been increasing. In accordance with Open-Access publishing, the JCMR articles go on-line as they are accepted with no collating of the articles into sections or special thematic issues. Last year for the first time, the Editors summarized the papers for the readership into broad areas of interest or theme, which we felt would be useful to practitioners of cardiovascular magnetic resonance (CMR) so that you could review areas of interest from the previous year in a single article in relation to each other and other recent JCMR articles [1]. This experiment proved very popular with a very high rate of downloading, and therefore we intend to continue this review annually. The papers are presented in themes and comparison is drawn with previously published JCMR papers to identify the continuity of thought and publication in the journal. We hope that you find the open-access system increases wider reading and citation of your papers, and that you will continue to send your quality manuscripts to JCMR for publication

    Asystole and scarring of the interventricular septum in hypertrophic cardiomyopathy.

    No full text
    We present the case of a 60-year-old woman who presented with syncope in the context of a diagnosis of hypertrophic cardiomyopathy. She had no high-risk features of ventricular tachycardia. An implantable loop recorder showed episodic asystole, with evidence of late enhancement on cardiovascular magnetic resonance in the basal septum, suggestive of fibrosis of the conducting system

    Pairwise detection of site-specific receptor phosphorylations using single-molecule blotting

    Get PDF
    Post-translational modifications (PTMs) of receptor tyrosine kinases (RTKs) at the plasma membrane (PM) determine the signal transduction efficacy alone and in combination. However, current approaches to identify PTMs provide ensemble results, inherently overlooking combinatorial PTMs in a single polypeptide molecule. Here, we describe a single-molecule blotting (SiMBlot) assay that combines biotinylation of cell surface receptors with single-molecule fluorescence microscopy. This method enables quantitative measurement of the phosphorylation status of individual membrane receptor molecules and colocalization analysis of multiple immunofluorescence signals to directly visualize pairwise site-specific phosphorylation patterns at the single-molecule level. Strikingly, application of SiMBlot to study ligand-dependent epidermal growth factor receptor (EGFR) phosphorylation, which is widely thought to be multi-phosphorylated, reveals that EGFR on cell membranes is hardly multi-phosphorylated, unlike in vitro autophosphorylated EGFR. Therefore, we expect SiMBlot to aid understanding of vast combinatorial PTM patterns, which are concealed in ensemble methods, and to broaden knowledge of RTK signaling.ope
    corecore