1,031 research outputs found
Predicting the thermodynamics by using state-dependent interactions
We reconsider the structure-based route to coarse graining in which the
coarse-grained model is defined in such a way to reproduce some distributions
functions of the original system as accurately as possible. We consider
standard expressions for pressure and chemical potential applied to this family
of coarse-grained models with density-dependent interactions and show that they
only provide approximations to the pressure and chemical potential of the
underlying original system. These approximations are then carefully compared in
two cases: we consider a generic microscopic system in the low-density regime
and polymer solutions under good-solvent conditions. Moreover, we show that the
state-dependent potentials depend on the ensemble in which they have been
derived. Therefore, care must be used in applying canonical state-dependent
potentials to predict phase lines, which is typically performed in other
ensembles.Comment: 29 pages, 1 figure; To appear in J. Chem. Phy
Recommended from our members
LENS® and SFF: Enabling Technologies for Optimized Structures
Optimized, lightweight, high-strength structures are needed in many applications from aerospace
to automotive. In pursuit of such structures, there have been proposed analytical solutions and
some specialized FEA solutions for specific structures such as automobile frames. However,
generalized 3D optimization methods have been unavailable for use by most designers.
Moreover, in the cases where optimized structural solutions are available, they are often hollow,
curving, thin wall structures that cannot be fabricated by conventional manufacturing methods.
Researchers at Sandia National Laboratories and the University of Rhode Island teamed to solve
these problems. The team has been pursuing two methods of optimizing models for generalized
loading conditions, and also has been investigating the methods needed to fabricate these
structures using Laser Engineered Net Shaping™ (LENS®) and other rapid prototyping
methods. These solid freeform fabrication (SFF) methods offer the unique ability to make
hollow, high aspect ratio features out of many materials. The manufacturing development
required for LENS to make these complex structures has included the addition of rotational axes
to Sandia’s LENS machine bringing the total to 5 controlled axes. The additional axes have
required new efforts in process planning. Several of the unique structures that are only now
possible through the use of SFF technology are shown as part of the discussion of this exciting
new application for SFF.Mechanical Engineerin
Ordered clusters and dynamical states of particles in a vibrated fluid
Fluid-mediated interactions between particles in a vibrating fluid lead to
both long range attraction and short range repulsion. The resulting patterns
include hexagonally ordered micro-crystallites, time-periodic structures, and
chaotic fluctuating patterns with complex dynamics. A model based on streaming
flow gives a good quantitative account of the attractive part of the
interaction.Comment: 4 pages, 5 figures, submitted to Phys. Rev. Let
Fluid Particle Accelerations in Fully Developed Turbulence
The motion of fluid particles as they are pushed along erratic trajectories
by fluctuating pressure gradients is fundamental to transport and mixing in
turbulence. It is essential in cloud formation and atmospheric transport,
processes in stirred chemical reactors and combustion systems, and in the
industrial production of nanoparticles. The perspective of particle
trajectories has been used successfully to describe mixing and transport in
turbulence, but issues of fundamental importance remain unresolved. One such
issue is the Heisenberg-Yaglom prediction of fluid particle accelerations,
based on the 1941 scaling theory of Kolmogorov (K41). Here we report
acceleration measurements using a detector adapted from high-energy physics to
track particles in a laboratory water flow at Reynolds numbers up to 63,000. We
find that universal K41 scaling of the acceleration variance is attained at
high Reynolds numbers. Our data show strong intermittency---particles are
observed with accelerations of up to 1,500 times the acceleration of gravity
(40 times the root mean square value). Finally, we find that accelerations
manifest the anisotropy of the large scale flow at all Reynolds numbers
studied.Comment: 7 pages, 4 figure
A Role for FACT in Repopulation of Nucleosomes at Inducible Genes
Xenobiotic drugs induce Pleiotropic Drug Resistance (PDR) genes via the orthologous Pdr1/Pdr3 transcription activators. We previously identified the Mediator transcription co-activator complex as a key target of Pdr1 orthologs and demonstrated that Pdr1 interacts directly with the Gal11/Med15 subunit of the Mediator complex. Based on an interaction between Pdr1 and the FACT complex, we show that strains with spt16 or pob3 mutations are sensitive to xenobiotic drugs and display diminished PDR gene induction. Although FACT acts during the activation of some genes by assisting in the nucleosomes eviction at promoters, PDR promoters already contain nucleosome-depleted regions (NDRs) before induction. To determine the function of FACT at PDR genes, we examined the kinetics of RNA accumulation and changes in nucleosome occupancy following exposure to a xenobiotic drug in wild type and FACT mutant yeast strains. In the presence of normal FACT, PDR genes are transcribed within 5 minutes of xenobiotic stimulation and transcription returns to basal levels by 30–40 min. Nucleosomes are constitutively depleted in the promoter regions, are lost from the open reading frames during transcription, and the ORFs are wholly repopulated with nucleosomes as transcription ceases. While FACT mutations cause minor delays in activation of PDR genes, much more pronounced and significant defects in nucleosome repopulation in the ORFs are observed in FACT mutants upon transcription termination. FACT therefore has a major role in nucleosome redeposition following cessation of transcription at the PDR genes, the opposite of its better-known function in nucleosome disassembly
Effective interactions between inclusions in complex fluids driven out of equilibrium
The concept of fluctuation-induced effective interactions is extended to
systems driven out of equilibrium. We compute the forces experienced by
macroscopic objects immersed in a soft material driven by external shaking
sources. We show that, in contrast with equilibrium Casimir forces induced by
thermal fluctuations, their sign, range and amplitude depends on specifics of
the shaking and can thus be tuned. We also comment upon the dispersion of these
shaking-induced forces, and discuss their potential application to phase
ordering in soft-materials.Comment: 10 pages, 8 figures, to appear in PR
Measurement of Lagrangian velocity in fully developed turbulence
We have developed a new experimental technique to measure the Lagrangian
velocity of tracer particles in a turbulent flow, based on ultrasonic Doppler
tracking. This method yields a direct access to the velocity of a single
particule at a turbulent Reynolds number . Its dynamics is
analyzed with two decades of time resolution, below the Lagrangian correlation
time. We observe that the Lagrangian velocity spectrum has a Lorentzian form
, in agreement
with a Kolmogorov-like scaling in the inertial range. The probability density
function (PDF) of the velocity time increments displays a change of shape from
quasi-Gaussian a integral time scale to stretched exponential tails at the
smallest time increments. This intermittency, when measured from relative
scaling exponents of structure functions, is more pronounced than in the
Eulerian framework.Comment: 4 pages, 5 figures. to appear in PR
Floquet-Markov description of the parametrically driven, dissipative harmonic quantum oscillator
Using the parametrically driven harmonic oscillator as a working example, we
study two different Markovian approaches to the quantum dynamics of a
periodically driven system with dissipation. In the simpler approach, the
driving enters the master equation for the reduced density operator only in the
Hamiltonian term. An improved master equation is achieved by treating the
entire driven system within the Floquet formalism and coupling it to the
reservoir as a whole. The different ensuing evolution equations are compared in
various representations, particularly as Fokker-Planck equations for the Wigner
function. On all levels of approximation, these evolution equations retain the
periodicity of the driving, so that their solutions have Floquet form and
represent eigenfunctions of a non-unitary propagator over a single period of
the driving. We discuss asymptotic states in the long-time limit as well as the
conservative and the high-temperature limits. Numerical results obtained within
the different Markov approximations are compared with the exact path-integral
solution. The application of the improved Floquet-Markov scheme becomes
increasingly important when considering stronger driving and lower
temperatures.Comment: 29 pages, 7 figure
Incorporating competition between life forms into the soil water submodel within STAND-BGC a vegetative process model
- …
