236 research outputs found
Quantum Randomness Certified by the Uncertainty Principle
We present an efficient method to extract the amount of true randomness that
can be obtained by a Quantum Random Number Generator (QRNG). By repeating the
measurements of a quantum system and by swapping between two mutually unbiased
bases, a lower bound of the achievable true randomness can be evaluated. The
bound is obtained thanks to the uncertainty principle of complementary
measurements applied to min- and max- entropies. We tested our method with two
different QRNGs, using a train of qubits or ququart, demonstrating the
scalability toward practical applications.Comment: 10 page
Bi-photon propagation control with optimized wavefront by means of Adaptive Optics
We present an efficient method to control the spatial modes of entangled
photons produced through SPDC process. Bi-photon beam propagation is controlled
by a deformable mirror, that shapes a 404nm CW diode laser pump interacting
with a nonlinear BBO type-I crystal. Thanks to adaptive optical system, the
propagation of 808nm SPDC light produced is optimized over a distance of 2m.
The whole system optimization is carried out by a feedback between deformable
mirror action and entangled photon coincidence counts. We also demonstrated the
improvement of the two-photon coupling into single mode fibers
A general theorem on the divergence of vortex beams
The propagation and divergence properties of beams carrying orbital angular
momentum (OAM) play a crucial role in many applications. Here we present a
general study on the divergence of optical beams with OAM. We show that the
mean absolute value of the OAM imposes a lower bound on the value of the beam
divergence. We discuss our results for two different definitions of the
divergence, the so called rms or encircled-energy. The bound on the rms
divergence can be expressed as a generalized uncertainty principle, with
applications in long-range communication, microscopy and 2D quantum systems.Comment: RevTex, published versio
Compression methods for XUV attosecond pulses
none5noneMark Mero;Fabio Frassetto;Paolo Villoresi;Luca Poletto;Katalin VarjúMark, Mero; Fabio, Frassetto; Villoresi, Paolo; Luca, Poletto; Katalin, Varj
High-dimensional decoy-state quantum key distribution over 0.3 km of multicore telecommunication optical fibers
Multiplexing is a strategy to augment the transmission capacity of a
communication system. It consists of combining multiple signals over the same
data channel and it has been very successful in classical communications.
However, the use of enhanced channels has only reached limited practicality in
quantum communications (QC) as it requires the complex manipulation of quantum
systems of higher dimensions. Considerable effort is being made towards QC
using high-dimensional quantum systems encoded into the transverse momentum of
single photons but, so far, no approach has been proven to be fully compatible
with the existing telecommunication infrastructure. Here, we overcome such a
technological challenge and demonstrate a stable and secure high-dimensional
decoy-state quantum key distribution session over a 0.3 km long multicore
optical fiber. The high-dimensional quantum states are defined in terms of the
multiple core modes available for the photon transmission over the fiber, and
the decoy-state analysis demonstrates that our technique enables a positive
secret key generation rate up to 25 km of fiber propagation. Finally, we show
how our results build up towards a high-dimensional quantum network composed of
free-space and fiber based linksComment: Please see the complementary work arXiv:1610.01812 (2016
Coherent control for the spherical symmetric box potential in short and intensive XUV laser fields
Coherent control calculations are presented for a spherically symmetric box
potential for non-resonant two photon transition probabilities. With the help
of a genetic algorithm (GA) the population of the excited states are maximized
and minimized. The external driving field is a superposition of three intensive
extreme ultraviolet (XUV) linearly polarized laser pulses with different
frequencies in the femtosecond duration range. We solved the quantum mechanical
problem within the dipole approximation. Our investigation clearly shows that
the dynamics of the electron current has a strong correlation with the
optimized and neutralizing pulse shape.Comment: 11 Pages 3 Figure
Hong-Ou-Mandel interference between independent III-V on silicon waveguide integrated lasers
The versatility of silicon photonic integrated circuits has led to a
widespread usage of this platform for quantum information based applications,
including Quantum Key Distribution (QKD). However, the integration of simple
high repetition rate photon sources is yet to be achieved. The use of
weak-coherent pulses (WCPs) could represent a viable solution. For example,
Measurement Device Independent QKD (MDI-QKD) envisions the use of WCPs to
distill a secret key immune to detector side channel attacks at large
distances. Thus, the integration of III-V lasers on silicon waveguides is an
interesting prospect for quantum photonics. Here, we report the experimental
observation of Hong-Ou-Mandel interference with 46\pm 2% visibility between
WCPs generated by two independent III-V on silicon waveguide integrated lasers.
This quantum interference effect is at the heart of many applications,
including MDI-QKD. Our work represents a substantial first step towards an
implementation of MDI-QKD fully integrated in silicon, and could be beneficial
for other applications such as standard QKD and novel quantum communication
protocols.Comment: 5 pages, 3 figure
Space-to-ground quantum-communication using an optical ground station: a feasibility study
We have tested the experimental prerequisites for a Space-to-Ground quantum
communication link between satellites and an optical ground station. The
feasibility of our ideas is being assessed using the facilities of the ASI
Matera Laser Ranging Observatory (MLRO). Specific emphasis is put on the
necessary technological modifications of the existing infrastructure to achieve
single photon reception from an orbiting satellite.Comment: 8 pages 5 figures, SPIE proceedings Quantum Communications and
Quantum Imaging II conference in Denver, July 200
Vacuum-ultraviolet photoabsorption imaging system for laser plasma plume diagnostics
We describe a recently designed and constructed system based on a 1 m normal incidence vacuum monochromator with corrected (toroidal) optics that produces a wavelength tuneable and collimated vacuum-ultraviolet (VUV) (λ=30–100 nm) beam. The VUV continuum source is a laser-generated gold plasma. The primary function of the system is the measurement of time resolved “images” or spatial distributions of photoabsorption/photoionization in expanding laser plasma plumes. This is achieved by passing the beam through the sample of interest (in our case a second synchronised plasma) and recording the “footprint” of the attenuated beam on a charge coupled device. Using this VUV photoabsorption imaging or “shadowgraphy” technique we track and extract column density distributions in expanding plasma plumes. We can also measure the plume front velocity. We have characterized the system, particularly in relation to spectral and spatial resolution and the experimental results meet very well the expectations from ray tracing done at the design phase. We present first photoabsorption images and column density distributions of laser produced Ca plumes from the system
Security Analysis of an Untrusted Source for Quantum Key Distribution: Passive Approach
We present a passive approach to the security analysis of quantum key
distribution (QKD) with an untrusted source. A complete proof of its
unconditional security is also presented. This scheme has significant
advantages in real-life implementations as it does not require fast optical
switching or a quantum random number generator. The essential idea is to use a
beam splitter to split each input pulse. We show that we can characterize the
source using a cross-estimate technique without active routing of each pulse.
We have derived analytical expressions for the passive estimation scheme.
Moreover, using simulations, we have considered four real-life imperfections:
Additional loss introduced by the "plug & play" structure, inefficiency of the
intensity monitor, noise of the intensity monitor, and statistical fluctuation
introduced by finite data size. Our simulation results show that the passive
estimate of an untrusted source remains useful in practice, despite these four
imperfections. Also, we have performed preliminary experiments, confirming the
utility of our proposal in real-life applications. Our proposal makes it
possible to implement the "plug & play" QKD with the security guaranteed, while
keeping the implementation practical.Comment: 35 pages, 19 figures. Published Versio
- …