1,759 research outputs found
Limits on the low energy antinucleon-nucleus annihilations from the Heisenberg principle
We show that the quantum uncertainty principle puts some limits on the
effectiveness of the antinucleon-nucleus annihilation at very low energies.
This is caused by the fact that the realization a very effective short-distance
reaction process implies information on the relative distance of the reacting
particles. Some quantitative predictions are possible on this ground, including
the approximate A-independence of antinucleon-nucleus annihilation rates.Comment: 10 pages, no figure
Evidence For The Production Of Slow Antiprotonic Hydrogen In Vacuum
We present evidence showing how antiprotonic hydrogen, the quasistable
antiproton-proton (pbar-p) bound system, has been synthesized following the
interaction of antiprotons with the hydrogen molecular ion (H2+) in a nested
Penning trap environment. From a careful analysis of the spatial distributions
of antiproton annihilation events, evidence is presented for antiprotonic
hydrogen production with sub-eV kinetic energies in states around n=70, and
with low angular momenta. The slow antiprotonic hydrogen may be studied using
laser spectroscopic techniques.Comment: 5 pages with 4 figures. Published as Phys. Rev. Letters 97, 153401
(2006), in slightly different for
Cold-Antimatter Physics
The CPT theorem and the Weak Equivalence Principle are foundational
principles on which the standard description of the fundamental interactions is
based. The validity of such basic principles should be tested using the largest
possible sample of physical systems. Cold neutral antimatter (low-energy
antihydrogen atoms) could be a tool for testing the CPT symmetry with high
precision and for a direct measurement of the gravitational acceleration of
antimatter. After several years of experimental efforts, the production of
low-energy antihydrogen through the recombination of antiprotons and positrons
is a well-established experimental reality. An overview of the ATHENA
experiment at CERN will be given and the main experimental results on
antihydrogen formation will be reviewed.Comment: Proceedings of the XLIII International Meeting on Nuclear Physics,
Bormio (Italy), March 13-20 (2005). 10 pages, 4 figures, 1 tabl
Detection of antihydrogen annihilations with a Si-micro-strip and pure CsI detector
In 2002, the ATHENA collaboration reported the creation and detection of cold
(~15 K) antihydrogen atoms [1]. The observation was based on the complete
reconstruction of antihydrogen annihilations, simultaneous and spatially
correlated annihilations of an antiproton and a positron. Annihilation
byproducts are measured with a cylindrically symmetric detector system
consisting of two layers of double sided Si-micro-strip modules that are
surrounded by 16 rows of 12 pure CsI crystals (13 x 17.5 x 17 mm^3). This paper
gives a brief overview of the experiment, the detector system, and event
reconstruction.
Reference 1. M. Amoretti et al., Nature 419, 456 (2002).Comment: 7 pages, 5 figures; Proceedings for the 8th ICATPP Conference on
Astroparticle, Particle, Space Physics, Detectors and Medical Physics
Applications (Como, Italy October 2003) to be published by World Scientific
(style file included
Symbolic dynamics for the -centre problem at negative energies
We consider the planar -centre problem, with homogeneous potentials of
degree -\a<0, \a \in [1,2). We prove the existence of infinitely many
collisions-free periodic solutions with negative and small energy, for any
distribution of the centres inside a compact set. The proof is based upon
topological, variational and geometric arguments. The existence result allows
to characterize the associated dynamical system with a symbolic dynamics, where
the symbols are the partitions of the centres in two non-empty sets
Using EMA to benchmark environmental costs – theory and experience from four countries through the UNIDO TEST project
Dual-readout Calorimetry
The RD52 Project at CERN is a pure instrumentation experiment whose goal is
to understand the fundamental limitations to hadronic energy resolution, and
other aspects of energy measurement, in high energy calorimeters. We have found
that dual-readout calorimetry provides heretofore unprecedented information
event-by-event for energy resolution, linearity of response, ease and
robustness of calibration, fidelity of data, and particle identification,
including energy lost to binding energy in nuclear break-up. We believe that
hadronic energy resolutions of {\sigma}/E 1 - 2% are within reach for
dual-readout calorimeters, enabling for the first time comparable measurement
preci- sions on electrons, photons, muons, and quarks (jets). We briefly
describe our current progress and near-term future plans. Complete information
on all aspects of our work is available at the RD52 website
http://highenergy.phys.ttu.edu/dream/.Comment: 10 pages, 10 figures, Snowmass White pape
ATHENA -- First Production of Cold Antihydrogen and Beyond
Atomic systems of antiparticles are the laboratories of choice for tests of
CPT symmetry with antimatter. The ATHENA experiment was the first to report the
production of copious amounts of cold antihydrogen in 2002. This article
reviews some of the insights that have since been gained concerning the
antihydrogen production process as well as the external and internal properties
of the produced anti-atoms. Furthermore, the implications of those results on
future prospects of symmetry tests with antimatter are discussed.Comment: Proc. of the Third Meeting on CPT and Lorentz Symmetry, Bloomington
(Indiana), USA, August 2004, edited by V. A. Kostelecky (World Scientific,
Singapore). 10 pages, 5 figures, 1 table. Author affiliations cor
- …
