378 research outputs found

    Role of interband scattering in neutron irradiated MgB2_2 thin films by Scanning Tunneling Spectroscopy measurements

    Full text link
    A series of MgB2_2 thin films systematically disordered by neutron irradiation have been studied by Scanning Tunneling Spectroscopy. The c-axis orientation of the films allowed a reliable determination of local density of state of the π\pi band. With increasing disorder, the conductance peak moves towards higher voltages and becomes lower and broader, indicating a monotonic increase of the π\pi gap and of the broadening parameter. These results are discussed in the frame of two-band superconductivity.Comment: The text will be submitted in Latex format, and the corresponding pdf file should take 6 pages. There are 5 figures (eps files submitted) and 1 tabl

    Volatile signals during pregnancy: A possible chemical basis for mother-infant recognition

    Get PDF
    Human pheromones play a role in regulating relationships and apparently influence partner choice and mother–infant recognition. We analyzed the chemical content of volatiles from sweat patch samples from the para-axillary and nipple–areola regions of women during pregnancy and after childbirth. Solid phase microextraction was used to extract the volatile compounds, which were then characterized and quantified by gas chromatography–mass spectrometry. During pregnancy, women developed a distinctive pattern of five volatile compounds common to the para-axillary and nipple–areola regions (1-dodecanol, 1-1′-oxybis octane, isocurcumenol, α-hexyl-cinnamic aldehyde, and isopropyl myristate). These compounds were absent outside pregnancy and had slightly different patterns in samples from the two body areas. Differentiation of the volatile patterns among pregnant women may help newborns to distinguish their own mothers

    Kink propagation in a two-dimensional curved Josephson junction

    Get PDF
    We consider the propagation of sine-Gordon kinks in a planar curved strip as a model of nonlinear wave propagation in curved wave guides. The homogeneous Neumann transverse boundary conditions, in the curvilinear coordinates, allow to assume a homogeneous kink solution. Using a simple collective variable approach based on the kink coordinate, we show that curved regions act as potential barriers for the wave and determine the threshold velocity for the kink to cross. The analysis is confirmed by numerical solution of the 2D sine-Gordon equation.Comment: 8 pages, 4 figures (2 in color

    A sol-gel method for growing superconducting MgB2 films

    Full text link
    In this paper we report a new sol-gel method for the fabrication of MgB2 films. Polycrystalline MgB2 films were prepared by spin-coating a precursor solution of Mg(BH_4)_2 diethyl ether on (001)Al2O3 substrates followed with annealing in Mg vapor. In comparison with the MgB2 films grown by other techniques, our films show medium qualities including a superconducting transition temperature of Tc ~ 37 K, a critical current density of Jc(5 K, 0 T) ~ 5 {\times} 10^6 A cm^{-2}, and a critical field of H_{c2}(0) ~ 19 T. Such a sol-gel technique shows potential in the commercial fabrication of practically used MgB2 films as well as MgB2 wires and tapes.Comment: 8 pages, 5 figure

    Growth methods of c-axis oriented MgB2 thin films by pulsed laser deposition

    Full text link
    High quality MgB2 thin films have been obtained by pulsed laser deposition both on MgO and on Al2O3 substrates using different methods. In the standard two-step procedure, an amorphous precursor layer is deposited at room temperature starting both from stoichiometric target and from boron target: after this first step, it is annealed in magnesium atmosphere in order to crystallize the superconducting phase. The so obtained films show a strong c-axis orientation, evidenced by XRD analysis, a critical temperature up to 38 K and very high critical fields along the basal planes, up to 22T at 15K. Also an in situ one step technique for the realization of superconducting MgB2 thin films has been developed. In this case, the presence of an argon buffer gas during deposition is crucial and we observe a strong dependence of the quality of the deposited film on the background gas pressure. The influence of the Ar atmosphere has been confirmed by time and space-resolved spectroscopy measurements on the emission spectrum of the plume. The Ar pressure modifies strongly the plasma kinetics by promoting excitation and ionization of the plume species, especially of the most volatile Mg atoms, increasing their internal energy.Comment: Paper presented at Boromag Workshop, Genoa 17-19 June 2002, in press on SUS

    Coherent Electron Transport in Superconducting-Normal Metallic Films

    Full text link
    We study the transport properties of a quasi-two-dimensional diffusive normal metal film attached to a superconductor. We demonstrate that the properties of such films can essentially differ from those of quasi-one-dimensional systems: in the presence of the proximity induced superconductivity in a sufficiently wide film its conductance may not only increase but also decrease with temperature. We develop a quantitative theory and discuss the physical nature of this effect. Our theory provides a natural explanation for recent experimental findings referred to as the ``anomalous proximity effect''.Comment: 4 Pages RevTex, 4 Postscript figures; submitted to Phys. Rev. Let

    Superconducting gap anisotropy of LuNi2B2C thin films from microwave surface impedance measurements

    Full text link
    Surface impedance measurements of LuNi2B2C superconducting thin films as a function of temperature have been performed down to 1.5 K and at 20 GHz using a dielectric resonator technique. The magnetic penetration depth closely reproduces the standard B.C.S. result, but with a reduced value of the energy gap at low temperature. These data provide evidence for an anisotropic s-wave character of the order parameter symmetry in LuNi2B2C. From the evaluation of the real part of complex conductivity, we have observed constructive (type II) coherence effects in the electromagnetic absorption below Tc.Comment: 15 pages, 4 figure

    Quasiparticle Inelastic Lifetime from Paramagnons in Disordered Superconductors

    Full text link
    The paramagnon contribution to the quasiparticle inelastic scattering rate in disordered superconductors is presented. Using Anderson's exact eigenstate formalism, it is shown that the scattering rate is Stoner enhanced and is further enhanced by the disorder relative to the clean case in a manner similar to the disorder enhancement of the long-range Coulomb contribution. The results are discussed in connection with the possibility of conventional or unconventional superconductivity in the borocarbides. The results are compared to recent tunneling experiments on LuNi2_{2}B2_{2}C.Comment: 5 pages, no figure

    Effect of two bands on critical fields in MgB2 thin films with various resistivity values

    Full text link
    Upper critical fields of four MgB2 thin films were measured up to 28 Tesla at Grenoble High Magnetic Field Laboratory. The films were grown by Pulsed Laser Deposition and showed critical temperatures ranging between 29.5 and 38.8 K and resistivities at 40 K varying from 5 to 50 mWcm. The critical fields in the perpendicular direction turned out to be in the 13-24 T range while they were estimated to be in 42-57 T the range in ab-planes. In contrast to the prediction of the BCS theory, we did not observe any saturation at low temperatures: a linear temperature dependence is exhibited even at lowest temperatures at which we made the measurements. Moreover, the critical field values seemed not to depend on the normal state resistivity value. In this paper, we analyze these data considering the multiband nature of superconductivity in MgB2 We will show how the scattering mechanisms that determine critical fields and resistivity can be different.Comment: 17 pages, 3 figure

    Analysis of the common genetic component of large-vessel vasculitides through a meta-Immunochip strategy.

    Get PDF
    Giant cell arteritis (GCA) and Takayasu’s arteritis (TAK) are major forms of large-vessel vasculitis (LVV) that share clinical features. To evaluate their genetic similarities, we analysed Immunochip genotyping data from 1,434 LVV patients and 3,814 unaffected controls. Genetic pleiotropy was also estimated. The HLA region harboured the main disease-specific associations. GCA was mostly associated with class II genes (HLA-DRB1/HLA-DQA1) whereas TAK was mostly associated with class I genes (HLA-B/MICA). Both the statistical significance and effect size of the HLA signals were considerably reduced in the cross-disease meta-analysis in comparison with the analysis of GCA and TAK separately. Consequently, no significant genetic correlation between these two diseases was observed when HLA variants were tested. Outside the HLA region, only one polymorphism located nearby the IL12B gene surpassed the study-wide significance threshold in the meta-analysis of the discovery datasets (rs755374, P = 7.54E-07; ORGCA = 1.19, ORTAK = 1.50). This marker was confirmed as novel GCA risk factor using four additional cohorts (PGCA = 5.52E-04, ORGCA = 1.16). Taken together, our results provide evidence of strong genetic differences between GCA and TAK in the HLA. Outside this region, common susceptibility factors were suggested, especially within the IL12B locus
    • …
    corecore