184 research outputs found
Force generation in small ensembles of Brownian motors
The motility of certain gram-negative bacteria is mediated by retraction of
type IV pili surface filaments, which are essential for infectivity. The
retraction is powered by a strong molecular motor protein, PilT, producing very
high forces that can exceed 150 pN. The molecular details of the motor
mechanism are still largely unknown, while other features have been identified,
such as the ring-shaped protein structure of the PilT motor. The surprisingly
high forces generated by the PilT system motivate a model investigation of the
generation of large forces in molecular motors. We propose a simple model,
involving a small ensemble of motor subunits interacting through the
deformations on a circular backbone with finite stiffness. The model describes
the motor subunits in terms of diffusing particles in an asymmetric,
time-dependent binding potential (flashing ratchet potential), roughly
corresponding to the ATP hydrolysis cycle. We compute force-velocity relations
in a subset of the parameter space and explore how the maximum force (stall
force) is determined by stiffness, binding strength, ensemble size, and degree
of asymmetry. We identify two qualitatively different regimes of operation
depending on the relation between ensemble size and asymmetry. In the
transition between these two regimes, the stall force depends nonlinearly on
the number of motor subunits. Compared to its constituents without
interactions, we find higher efficiency and qualitatively different
force-velocity relations. The model captures several of the qualitative
features obtained in experiments on pilus retraction forces, such as roughly
constant velocity at low applied forces and insensitivity in the stall force to
changes in the ATP concentration.Comment: RevTex 9 pages, 4 figures. Revised version, new subsections in Sec.
III, removed typo
Associations of vitamin D pathway genes with circulating 25-hydroxyvitamin-D, 1,25-dihydroxyvitamin-D, and prostate cancer:a nested case-control study
Vitamin D pathway single nucleotide polymorphisms (SNPs) are potentially useful proxies for investigating whether circulating vitamin D metabolites [total 25-hydroxyvitamin-D, 25(OH)D; 1,25-dihydroxyvitamin, 1,25(OH)2D] are causally related to prostate cancer. We investigated associations of sixteen SNPs across seven genes with prostate-specific antigen-detected prostate cancer
Second primary cancers in patients with skin cancer: a population-based study in Northern Ireland
Among all 14β500 incident cases of basal cell carcinoma (BCC), 6405 squamous cell carcinomas (SCC) and 1839 melanomas reported to the Northern Ireland Cancer Registry between 1993 and 2002, compared with the general population, risk of new primaries after BCC or SCC was increased by 9 and 57%, respectively. The subsequent risk of cancer, overall, was more than double after melanoma
A comparison of sunlight exposure in men with prostate cancer and basal cell carcinoma
Ultraviolet radiation exposure increases basal cell carcinoma (BCC) risk, but may be protective against prostate cancer. We attempted to identify exposure patterns that confer reduced prostate cancer risk without increasing that of BCC. We used a questionnaire to assess exposure in 528 prostate cancer patients and 442 men with basal cell carcinoma, using 365 benign prostatic hypertrophy patients as controls. Skin type 1 (odds ratio (OR)=0.47, 95% CI=0.26β0.86), childhood sunburning (OR=0.38, 95% CI=0.26β0.57), occasional/frequent sunbathing (OR=0.21, 95% CI=0.14β0.31), lifetime weekday (OR=0.85, 95% CI=0.80β0.91) and weekend exposure (OR=0.79, 95% CI=0.73β0.86) were associated with reduced prostate cancer risk. Skin type 1 (OR=4.00, 95% CI=2.16β7.41), childhood sunburning (OR=1.91, 95% CI=1.36β2.68), regular foreign holidays (OR=6.91, 95% CI=5.00-9.55) and weekend (OR=1.17, 95% CI=1.08β1.27) but not weekday exposure were linked with increased BCC risk. Combinations of one or two parameters were associated with a progressive decrease in the ORs for prostate cancer risk (OR=0.54β0.25) with correspondingly increased BCC risk (OR=1.60β2.54). Our data do not define exposure patterns that reduce prostate cancer risk without increasing BCC risk
Prospective study of serum 25(OH)-vitamin D concentration and risk of oesophageal and gastric cancers
We prospectively examined the relation between pretrial serum vitamin D status and risk of oesophageal and gastric cancers among subjects who developed cancer over 5.25 years of follow-up, including 545 oesophageal squamous cell carcinomas (ESCC), 353 gastric cardia adenocarcinomas, 81 gastric noncardia adenocarcinomas, and an age- and sex-stratified random sample of 1105 subjects. The distribution of serum 25(OH)D was calculated using the known sampling weights. For the cohort as a whole, the 25th, 50th, and 75th percentile concentrations of 25(OH)-vitamin D were 19.6, 31.9, and 48.7βnmolβlβ1, respectively, and we found that higher serum 25(OH)D concentrations were associated with monotonically increasing risk of ESCC in men, but not in women. Comparing men in the fourth quartile of serum 25(OH)D concentrations to those in the first, we found a hazard ratio (HR) (95% confidence interval (CI)) of 1.77 (1.16β2.70), P trend=0.0033. The same comparison in women had a HR (95% CI) of 1.06 (0.71β1.59), P trend=0.70. We found no associations for gastric cardia or noncardia adenocarcinoma. Among subjects with low vitamin D status, higher serum 25(OH)D concentrations were associated with significantly increased risk of ESCC in men, but not in women. Further refinements of the analysis did not suggest any factors, which could explain this unexpected result
Pre-Diagnostic Circulating Vitamin D and Risk of Melanoma in Men
PURPOSE: Various studies have examined the association between serum vitamin D levels and different cancers; however, this is the first prospective study of this association with melanoma risk. The aim of this study is to investigate the association between serum vitamin D [25(OH)D] levels and melanoma in a cohort of older, middle-aged Finnish male smokers. METHODS: We conducted a nested case-control study within the Alpha-Tocopherol Beta-Carotene Cancer Prevention (ATBC) Study. From the ATBC cohort, 368 subjects were chosen for our study; 92 participants that developed melanoma and 276 matched control subjects. At study baseline, lifestyle questionnaires and blood samples were collected. Serum 25(OH)D was modeled as three sets of categorical variables: clinically-defined categories, season-specific quartiles and season-adjusted residual quartiles. Conditional logistic regression was used to obtain odds ratios (ORs) and 95% confidence intervals (95% CIs) to estimate the association between circulating vitamin D and melanoma risk. RESULTS: Overall no association of serum 25(OH)D and melanoma risk was observed. A decreased risk of developing melanoma was observed in the middle categories compared to the lowest category, albeit not significant. CONCLUSION: Results indicate no association between serum 25(OH)D levels and melanoma. Additional studies, including possibly consortium efforts, are needed to investigate the association between serum 25(OH)D levels and risk of melanoma in larger, more diverse study populations
Impact of vitamin D metabolism on clinical epigenetics
The bioactive vitamin D (VD) metabolite, 1,25-dihydroxyvitamin D3 regulates essential pathways of cellular metabolism and differentiation via its nuclear receptor (VDR). Molecular mechanisms which are known to play key roles in aging and cancer are mediated by complex processes involving epigenetic mechanisms contributing to efficiency of VD-activating CYP27A1 and CYP27B1 or inactivating CYP24 enzymes as well as VDR which binds to specific genomic sequences (VD response elements or VDREs). Activity of VDR can be modulated epigenetically by histone acetylation. It co-operates with other nuclear receptors which are influenced by histone acetyl transferases (HATs) as well as several types of histone deacetylases (HDACs). HDAC inhibitors (HDACi) and/or demethylating drugs may contribute to normalization of VD metabolism. Studies link VD signaling through the VDR directly to distinct molecular mechanisms of both HAT activity and the sirtuin class of HDACs (SIRT1) as well as the forkhead transcription factors thus contributing to elucidate complex epigenetic mechanisms for cancer preventive actions of VD
- β¦