21,052 research outputs found
Answer Sets for Logic Programs with Arbitrary Abstract Constraint Atoms
In this paper, we present two alternative approaches to defining answer sets
for logic programs with arbitrary types of abstract constraint atoms (c-atoms).
These approaches generalize the fixpoint-based and the level mapping based
answer set semantics of normal logic programs to the case of logic programs
with arbitrary types of c-atoms. The results are four different answer set
definitions which are equivalent when applied to normal logic programs. The
standard fixpoint-based semantics of logic programs is generalized in two
directions, called answer set by reduct and answer set by complement. These
definitions, which differ from each other in the treatment of
negation-as-failure (naf) atoms, make use of an immediate consequence operator
to perform answer set checking, whose definition relies on the notion of
conditional satisfaction of c-atoms w.r.t. a pair of interpretations. The other
two definitions, called strongly and weakly well-supported models, are
generalizations of the notion of well-supported models of normal logic programs
to the case of programs with c-atoms. As for the case of fixpoint-based
semantics, the difference between these two definitions is rooted in the
treatment of naf atoms. We prove that answer sets by reduct (resp. by
complement) are equivalent to weakly (resp. strongly) well-supported models of
a program, thus generalizing the theorem on the correspondence between stable
models and well-supported models of a normal logic program to the class of
programs with c-atoms. We show that the newly defined semantics coincide with
previously introduced semantics for logic programs with monotone c-atoms, and
they extend the original answer set semantics of normal logic programs. We also
study some properties of answer sets of programs with c-atoms, and relate our
definitions to several semantics for logic programs with aggregates presented
in the literature
Unparticle Self-Interactions and Their Collider Implications
In unparticle physics, operators of the conformal sector have
self-interactions, and these are unsuppressed for strong coupling. The 3-point
interactions are completely determined by conformal symmetry, up to a constant.
We do not know of any theoretical upper bounds on this constant. Imposing
current experimental constraints, we find that these interactions mediate
spectacular collider signals, such as , , , , , and
, with cross sections of picobarns or larger at the Large Hadron Collider.
Self-interactions may therefore provide the leading discovery prospects for
unparticle physics.Comment: 12 pages, 5 figures; v2: published versio
The Extreme Ultraviolet and X-Ray Sun in Time: High-Energy Evolutionary Tracks of a Solar-Like Star
Aims. We aim to describe the pre-main sequence and main-sequence evolution of
X-ray and extreme-ultaviolet radiation of a solar mass star based on its
rotational evolution starting with a realistic range of initial rotation rates.
Methods. We derive evolutionary tracks of X-ray radiation based on a
rotational evolution model for solar mass stars and the rotation-activity
relation. We compare these tracks to X-ray luminosity distributions of stars in
clusters with different ages.
Results. We find agreement between the evolutionary tracks derived from
rotation and the X-ray luminosity distributions from observations. Depending on
the initial rotation rate, a star might remain at the X-ray saturation level
for very different time periods, approximately from 10 Myr to 300 Myr for slow
and fast rotators, respectively.
Conclusions. Rotational evolution with a spread of initial conditions leads
to a particularly wide distribution of possible X-ray luminosities in the age
range of 20 to 500 Myrs, before rotational convergence and therefore X-ray
luminosity convergence sets in. This age range is crucial for the evolution of
young planetary atmospheres and may thus lead to very different planetary
evolution histories.Comment: 4 pages, 4 figures, accepted for publication in A&
Size-Dependent Tile Self-Assembly: Constant-Height Rectangles and Stability
We introduce a new model of algorithmic tile self-assembly called
size-dependent assembly. In previous models, supertiles are stable when the
total strength of the bonds between any two halves exceeds some constant
temperature. In this model, this constant temperature requirement is replaced
by an nondecreasing temperature function that depends on the size of the smaller of the two halves. This
generalization allows supertiles to become unstable and break apart, and
captures the increased forces that large structures may place on the bonds
holding them together.
We demonstrate the power of this model in two ways. First, we give fixed tile
sets that assemble constant-height rectangles and squares of arbitrary input
size given an appropriate temperature function. Second, we prove that deciding
whether a supertile is stable is coNP-complete. Both results contrast with
known results for fixed temperature.Comment: In proceedings of ISAAC 201
Cholesterol-directed nanoparticle assemblies based on single amino acid peptide mutations activate cellular uptake and decrease tumor volume.
Peptide drugs have been difficult to translate into effective therapies due to their low in vivo stability. Here, we report a strategy to develop peptide-based therapeutic nanoparticles by screening a peptide library differing by single-site amino acid mutations of lysine-modified cholesterol. Certain cholesterol-modified peptides are found to promote and stabilize peptide α-helix formation, resulting in selectively cell-permeable peptides. One cholesterol-modified peptide self-assembles into stable nanoparticles with considerable α-helix propensity stabilized by intermolecular van der Waals interactions between inter-peptide cholesterol molecules, and shows 68.3% stability after incubation with serum for 16 h. The nanoparticles in turn interact with cell membrane cholesterols that are disproportionately present in cancer cell membranes, inducing lipid raft-mediated endocytosis and cancer cell death. Our results introduce a strategy to identify peptide nanoparticles that can effectively reduce tumor volumes when administered to in in vivo mice models. Our results also provide a simple platform for developing peptide-based anticancer drugs
Microscopic models for Kitaev's sixteenfold way of anyon theories
In two dimensions, the topological order described by gauge
theory coupled to free or weakly interacting fermions with a nonzero spectral
Chern number is classified by as predicted by
Kitaev [Ann. Phys. 321, 2 (2006)]. Here we provide a systematic and complete
construction of microscopic models realizing this so-called sixteenfold way of
anyon theories. These models are defined by matrices satisfying the
Clifford algebra, enjoy a global symmetry, and live on
either square or honeycomb lattices depending on the parity of . We show
that all these models are exactly solvable by using a Majorana representation
and characterize the topological order by calculating the topological spin of
an anyonic quasiparticle and the ground-state degeneracy. The possible
relevance of the and models to materials with
Kugel-Khomskii-type spin-orbital interactions is discussed.Comment: 6+9 pages, 2+1 figures, published versio
- …