4 research outputs found

    Lack of Effect of Sleep Apnea on Oxidative Stress in Obstructive Sleep Apnea Syndrome (OSAS) Patients

    Get PDF
    PURPOSE: The aim of this study was to evaluate markers of systemic oxidative stress and antioxidant capacity in subjects with and without OSAS in order to investigate the most important factors that determine the oxidant-antioxidant status. METHODS: A total of 66 subjects referred to our Sleep laboratory were examined by full polysomnography. Oxidative stress and antioxidant activity were assessed by measurement of the derivatives of reactive oxygen metabolites (d-ROMs) and the biological antioxidant capacity (BAP) in blood samples taken in the morning after the sleep study. Known risk factors for oxidative stress, such as age, sex, obesity, smoking, hypelipidemia, and hypertension, were investigated as possible confounding factors. RESULTS: 42 patients with OSAS (Apnea-Hypopnea index >15 events/hour) were compared with 24 controls (AHI<5). The levels of d-ROMS were significantly higher (p = 0.005) in the control group but the levels of antioxidant capacity were significantly lower (p = 0.004) in OSAS patients. The most important factors predicting the variance of oxidative stress were obesity, smoking habit, and sex. Parameters of sleep apnea severity were not associated with oxidative stress. Minimal oxygen desaturation and smoking habit were the most important predicting factors of BAP levels. CONCLUSION: Obesity, smoking, and sex are the most important determinants of oxidative stress in OSAS subjects. Sleep apnea might enhance oxidative stress by the reduction of antioxidant capacity of blood due to nocturnal hypoxia

    Natural Selection and Adaptive Evolution of Leptin in the Ochotona Family Driven by the Cold Environmental Stress

    Get PDF
    BACKGROUND: Environmental stress can accelerate the evolutionary rate of specific stress-response proteins and create new functions specialized for different environments, enhancing an organism's fitness to stressful environments. Pikas (order Lagomorpha), endemic, non-hibernating mammals in the modern Holarctic Region, live in cold regions at either high altitudes or high latitudes and have a maximum distribution of species diversification confined to the Qinghai-Tibet Plateau. Variations in energy metabolism are remarkable for them living in cold environments. Leptin, an adipocyte-derived hormone, plays important roles in energy homeostasis. METHODOLOGY/PRINCIPAL FINDINGS: To examine the extent of leptin variations within the Ochotona family, we cloned the entire coding sequence of pika leptin from 6 species in two regions (Qinghai-Tibet Plateau and Inner Mongolia steppe in China) and the leptin sequences of plateau pikas (O. curzonia) from different altitudes on Qinghai-Tibet Plateau. We carried out both DNA and amino acid sequence analyses in molecular evolution and compared modeled spatial structures. Our results show that positive selection (PS) acts on pika leptin, while nine PS sites located within the functionally significant segment 85-119 of leptin and one unique motif appeared only in pika lineages-the ATP synthase alpha and beta subunit signature site. To reveal the environmental factors affecting sequence evolution of pika leptin, relative rate test was performed in pikas from different altitudes. Stepwise multiple regression shows that temperature is significantly and negatively correlated with the rates of non-synonymous substitution (Ka) and amino acid substitution (Aa), whereas altitude does not significantly affect synonymous substitution (Ks), Ka and Aa. CONCLUSIONS/SIGNIFICANCE: Our findings support the viewpoint that adaptive evolution may occur in pika leptin, which may play important roles in pikas' ecological adaptation to extreme environmental stress. We speculate that cold, and probably not hypoxia, may be the primary environmental factor for driving adaptive evolution of pika leptin
    corecore