211 research outputs found
Arbuscular mycorrhizal fungi as a tool to ameliorate the phytoremediation potential of poplar: biochemical and molecular aspects
Poplar is a suitable species for phytoremediation, able to tolerate high concentrations of heavy metals (HMs). Arbuscular mycorrhizal fungi (AMF) form symbiotic associations with the roots of most land plants; they improve nutrient uptake and enhance phytoextraction of HMs while alleviating stress in the host plant. This review summarizes previous results from field and greenhouse studies conducted by us and dealing with this topic. In a field trial on a highly Zn- and Cu-contaminated site, differences in plant survival and growth were observed among 168 clones originating from natural populations of Populus alba L. and Populus nigra L. from northern Italy. After two and a half years from planting, the density, activity and metabolic versatility of the culturable fraction of the soil bacteria in the HM-polluted field was higher in the soil close to where larger poplar plants were growing, in spite of comparable HM concentrations recorded in these soils. One well-performing clone of P. alba (AL35), which accumulated a higher concentration of both metals and had high foliar polyamine (PA) levels, was used for further investigation. In a greenhouse study, AL35 cuttings pre-inoculated with AMF (Glomus mosseae or Glomus intraradices) and then transferred to pots containing soil, collected from the HM-polluted site, displayed growth comparable to that of controls grown on unpolluted soil, in spite of higher Cu and Zn accumulation. Such plants also showed an overall up-regulation of metallothionein (MT) and PA biosynthetic genes, together with increased PA levels. A genome-wide transcriptomic (cDNA-AFLP) analysis allowed the identification of a number of genes, mostly belonging to stress-related functional categories of defense and secondary metabolism, that were differentially regulated in mycorrhizal vs. non mycorrhizal plants. A proteomic analysis revealed that, depending on sampling time, changes in protein profiles were differentially affected by AMF and/or HMs. It is concluded that soil-borne microorganisms affect plant performance on HM-polluted soil. In particular, mycorrhizal plants exhibited increased capacity for phytostabilization of HMs, together with improved growth. Their greater stress tolerance may derive from the protective role of PAs, and from the strong modulation in the expression profiles of stress-related genes and proteins
Neoadjuvant and adjuvant doxorubicin chemotherapy in a case of feline soft tissue sarcoma
A 7-year old male neutered domestic shorthair cat was presented with a 2 month history of a slow-growing mass on the right zygomatic area. A CT scan revealed a soft tissue mass in the right zygomatic region with no alterations of the underlying bone and features of local invasiveness. Cytology was suggestive of a mesenchymal tumour and histopathology from an incisional biopsy was consistent with a soft tissue sarcoma (STS). The cat was treated with neoadjuvant intravenous doxorubicin chemotherapy at a dose of 25 mg/m2, every two weeks. The patient experienced a partial response and underwent surgical excision of the tumour. Doxorubicin was continued as an adjuvant treatment for three further chemotherapy sessions, at a dose of 25 mg/m2 every 21 days. Local tumour recurrence was detected on clinical examination and cytologically confirmed 259 days following surgery
Design of the strut braced wing aircraft in the agile collaborative MDO framework
The paper describes the deployment of the AGILE Development Framework to investigate the Strut Braced Wing aircraft configuration. The design process consists of a multilevel multidisciplinary architecture, progressing from the initial conceptual synthesis to the physics based analysis. All the main disciplinary domains, including on board system design and cost assessment, are accounted for in the assembled workflow. Due to the specific characteristics of the Strut Braced Wing configuration, the aeroelastic analysis is the main focus of the study and it is addressed at both high and low fidelity levels. The integration of the engine-wing system is also included in the design process. All the design competences, which are hosted at the different partners, communicate via CPACS (Common Parametric Aircraft Configuration Schema) data schema. All the results generated, including the multidisciplinary design process itself, will be published and made available as part of the AGILE Overall Aircraft Design database
MBSE Certification-Driven Design of a UAV MALE Configuration in the AGILE 4.0 Design Environment
This paper presents a certification-driven design process for an Unmanned Medium-Altitude-
Long-Endurance (UAV MALE) air vehicle, including on-board system design and placements,
electro-magnetic compatibility analysis, and thermal risk assessments. In literature, the
preliminary aircraft design phase is mainly driven by mission performances and structural
integrity aspects. However, the inclusion of other disciplines, like on-board system design or
electro-magnetic compatibility, or thermal analysis, can lead to more efficient and cost-
effective solutions and becomes paramount for non-conventional configurations like
unmanned vehicles or highly electrified platforms. In the EC-funded AGILE 4.0 project
(2019-2022), the traditional scope of the preliminary aircraft design is extended by including
domains that are usually considered only in later design phases, such as certification,
production and maintenance. In this paper, the AGILE 4.0 design environment supports the
definition and execution of a certification-driven design process of a UAV MALE
configuration, using a Model-Based Systems Engineering (MBSE) approach
- …