65 research outputs found
Adenoviral Vectors Expressing Human Endostatin–Angiostatin and Soluble Tie2: Enhanced Suppression of Tumor Growth and Antiangiogenic Effects in a Prostate Tumor Model
Angiogenesis is essential for prostate cancer development and metastasis. Antiangiogenic therapy targeting tumor neovasculature, therefore, represents a promising approach for prostate cancer treatment. We hypothesized that adenoviral-mediated delivery of a combination of antiangiogenic factors might have an enhanced antitumor response. We developed the adenoviral vectors Ad-hEndo-angio, expressing a unique, chimeric human endostatin–angiostatin fusion protein, and Ad-sTie2, expressing a soluble form of endothelium-specific receptor tyrosine kinase Tie2. Matrigel angiogenesis assays using Ad-hEndo-angio revealed significant inhibition of tubular network formation and endothelial sprouting compared to Ad-sTie2. In vivo studies in a bilateral PC-3 tumor xenograft model following either intratumoral or systemic administration of Ad-hEndo-angio led to enhanced tumor growth suppression compared to Ad-sTie2. A novel finding is that an intratumoral, combination therapy employing one-half the dose of Ad-hEndo-angio as well as Ad-sTie2 led to a complete regression of the injected, as well as the contralateral uninjected, tumor and prolonged the tumor-free survival in 80% of the animals. In addition, a novel, real-time, intravital imaging modality was used to monitor antiangiogenic responses following adenoviral-mediated gene transfer. These results suggest that a combinatorial antiangiogenic gene therapy approach involving Ad-hEndo-angio and Ad-sTie2 could become a novel form of treatment for localized human prostate cancer
Hypoxia-Inducible Factor-1α Regulates CD55 in Airway Epithelium
Airway epithelial CD55 down-regulation occurs in several hypoxia-associated pulmonary diseases, but the mechanism is unknown. Using in vivo and in vitro assays of pharmacologic inhibition and gene silencing, the current study investigated the role of hypoxia-inducible factor (HIF)-1α in regulating airway epithelial CD55 expression. Hypoxia down-regulated CD55 expression on small-airway epithelial cells in vitro, and in murine lungs in vivo; the latter was associated with local complement activation. Treatment with pharmacologic inhibition or silencing of HIF-1α during hypoxia-recovered CD55 expression in small-airway epithelial cells. HIF-1α overexpression or blockade, in vitro or in vivo, down-regulated CD55 expression. Collectively, these data show a key role for HIF-1α in regulating the expression of CD55 on airway epithelium
Listeria monocytogenes Internalin B Activates Junctional Endocytosis to Accelerate Intestinal Invasion
Listeria monocytogenes (Lm) uses InlA to invade the tips of the intestinal villi, a location at which cell extrusion generates a transient defect in epithelial polarity that exposes the receptor for InlA, E-cadherin, on the cell surface. As the dying cell is removed from the epithelium, the surrounding cells reorganize to form a multicellular junction (MCJ) that Lm exploits to find its basolateral receptor and invade. By examining individual infected villi using 3D-confocal imaging, we uncovered a novel role for the second major invasin, InlB, during invasion of the intestine. We infected mice intragastrically with isogenic strains of Lm that express or lack InlB and that have a modified InlA capable of binding murine E-cadherin and found that Lm lacking InlB invade the same number of villi but have decreased numbers of bacteria within each infected villus tip. We studied the mechanism of InlB action at the MCJs of polarized MDCK monolayers and find that InlB does not act as an adhesin, but instead accelerates bacterial internalization after attachment. InlB locally activates its receptor, c-Met, and increases endocytosis of junctional components, including E-cadherin. We show that MCJs are naturally more endocytic than other sites of the apical membrane, that endocytosis and Lm invasion of MCJs depends on functional dynamin, and that c-Met activation by soluble InlB or hepatocyte growth factor (HGF) increases MCJ endocytosis. Also, in vivo, InlB applied through the intestinal lumen increases endocytosis at the villus tips. Our findings demonstrate a two-step mechanism of synergy between Lm's invasins: InlA provides the specificity of Lm adhesion to MCJs at the villus tips and InlB locally activates c-Met to accelerate junctional endocytosis and bacterial invasion of the intestine
Listeria pathogenesis and molecular virulence determinants
The gram-positive bacterium Listeria monocytogenes is the causative agent of listeriosis, a highly fatal opportunistic foodborne infection. Pregnant women, neonates, the elderly, and debilitated or immunocompromised patients in general are predominantly affected, although the disease can also develop in normal individuals. Clinical manifestations of invasive listeriosis are usually severe and include abortion, sepsis, and meningoencephalitis. Listeriosis can also manifest as a febrile gastroenteritis syndrome. In addition to humans, L. monocytogenes affects many vertebrate species, including birds. Listeria ivanovii, a second pathogenic species of the genus, is specific for ruminants. Our current view of the pathophysiology of listeriosis derives largely from studies with the mouse infection model. Pathogenic listeriae enter the host primarily through the intestine. The liver is thought to be their first target organ after intestinal translocation. In the liver, listeriae actively multiply until the infection is controlled by a cell-mediated immune response. This initial, subclinical step of listeriosis is thought to be common due to the frequent presence of pathogenic L. monocytogenes in food. In normal indivuals, the continual exposure to listerial antigens probably contributes to the maintenance of anti-Listeria memory T cells. However, in debilitated and immunocompromised patients, the unrestricted proliferation of listeriae in the liver may result in prolonged low-level bacteremia, leading to invasion of the preferred secondary target organs (the brain and the gravid uterus) and to overt clinical disease. L. monocytogenes and L. ivanovii are facultative intracellular parasites able to survive in macrophages and to invade a variety of normally nonphagocytic cells, such as epithelial cells, hepatocytes, and endothelial cells. In all these cell types, pathogenic listeriae go through an intracellular life cycle involving early escape from the phagocytic vacuole, rapid intracytoplasmic multiplication, bacterially induced actin-based motility, and direct spread to neighboring cells, in which they reinitiate the cycle. In this way, listeriae disseminate in host tissues sheltered from the humoral arm of the immune system. Over the last 15 years, a number of virulence factors involved in key steps of this intracellular life cycle have been identified. This review describes in detail the molecular determinants of Listeria virulence and their mechanism of action and summarizes the current knowledge on the pathophysiology of listeriosis and the cell biology and host cell responses to Listeria infection. This article provides an updated perspective of the development of our understanding of Listeria pathogenesis from the first molecular genetic analyses of virulence mechanisms reported in 1985 until the start of the genomic era of Listeria research
Distinct localizations of tropomyosin isoforms in LLC-PK1 epithelial cells suggests specialized function at cell-cell adhesions
At least eight nonmuscle, nonbrain tropomyosin isoforms have been described. We used antibodies, microinjection, and transfection to characterize their expression and localization in LLC-PK1 kidney epithelial cells and compared them with other cells. Similar to primary enterocytes, LLC-PK1 cells exhibited predominantly TM-1 and TM-3 of the high-molecular-weight (HMW) isoforms; TM-5 and TM-5b of the low-molecular-weight (LMW) isoforms. Neither TM-4 nor TM-5a was detectable in the LLC-PKI cells. Immunofluorescence studies revealed that HMW isoforms were localized only on stress fibers, not adhesion belts, whereas the adhesion belts were stained by LMW isoform antibodies. When exogenous proteins are introduced either by transfection or microinjection, the HMW isoforms do not incorporate into the adhesion belt, whereas the LMW isoforms can incorporate into the stress fibers, thus indicating there are different mechanisms at work for the selective localization. Temporal changes in the microfilament system of the LLC-PK1 cells were studied during differentiation in culture as defined by spectrin expression and F-actin architecture. Western blot analysis indicated that TM-5b is only expressed in the LLC-PK1 cells after a certain degree of maturation in culture, which suggests isoform switching after the cell-cell contacts are developed. Collectively these results demonstrate that epithelial cells express a complex pattern of TM isoforms, which exhibit differential localizations within the cells and different patterns of expression depending on their origin and stage of differentiation. The implication of differential localization of TM isoforms on their specific functions is discussed
Aberrant epigenetic and transcriptional events associated with breast cancer risk
Background: Genome-wide association studies have identified several breast cancer susceptibility loci. However, biomarkers for risk assessment are still missing. Here, we investigated cancer-related molecular changes detected in tissues from women at high risk for breast cancer prior to disease manifestation. Disease-free breast tissue cores donated by healthy women (N = 146, median age = 39 years) were processed for both methylome (MethylCap) and transcriptome (Illumina's HiSeq4000) sequencing. Analysis of tissue microarray and primary breast epithelial cells was used to confirm gene expression dysregulation.
Results: Transcriptomic analysis identified 69 differentially expressed genes between women at high and those at average risk of breast cancer (Tyrer-Cuzick model) at FDR < 0.05 and fold change ≥ 2. Majority of the identified genes were involved in DNA damage checkpoint, cell cycle, and cell adhesion. Two genes, FAM83A and NEK2, were overexpressed in tissue sections (FDR < 0.01) and primary epithelial cells (p < 0.05) from high-risk breasts. Moreover, 1698 DNA methylation changes were identified in high-risk breast tissues (FDR < 0.05), partially overlapped with cancer-related signatures, and correlated with transcriptional changes (p < 0.05, r ≤ 0.5). Finally, among the participants, 35 women donated breast biopsies at two time points, and age-related molecular alterations enhanced in high-risk subjects were identified.
Conclusions: Normal breast tissue from women at high risk of breast cancer bears molecular aberrations that may contribute to breast cancer susceptibility. This study is the first molecular characterization of the true normal breast tissues, and provides an opportunity to investigate molecular markers of breast cancer risk, which may lead to new preventive approaches
- …