23 research outputs found

    A rat model of picornavirus-induced airway infection and inflammation

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Infection of the lower airways by rhinovirus, a member of the picornavirus family, is an important cause of wheezing illnesses in infants, and plays an important role in the pathogenesis of rhinovirus-induced asthma exacerbations. Given the absence of natural rhinovirus infections in rodents, we investigated whether an attenuated form of mengovirus, a picornavirus whose wild-type form causes systemic rather than respiratory infections in its natural rodent hosts, could induce airway infections in rats with inflammatory responses similar to those in human rhinovirus infections.</p> <p>Results</p> <p>After inoculation with 10<sup>7 </sup>plaque-forming units of attenuated mengovirus through an inhalation route, infectious mengovirus was consistently recovered on days 1 and 3 postinoculation from left lung homogenates (median Log<sub>10 </sub>plaque-forming units = 6.0 and 4.8, respectively) and right lung bronchoalveolar lavage fluid (median Log<sub>10 </sub>plaque-forming units = 5.8 and 4.0, respectively). Insufflation of attenuated mengovirus, but not vehicle or UV-inactivated virus, into the lungs of BN rats caused significant increases <it>(P </it>< 0.05) in lower airway neutrophils and lymphocytes in the bronchoalveolar lavage fluid and patchy peribronchiolar, perivascular, and alveolar cellular infiltrates in lung tissue sections. In addition, infection with attenuated mengovirus significantly increased (<it>P </it>< 0.05) lower airway levels of neutrophil chemoattractant CXCR2 ligands [cytokine-induced neutrophil chemoattractant-1 (CINC-1; CXCL1) and macrophage inflammatory protein-2 (MIP-2; CXCL2)] and monocyte chemoattractant protein-1 (MCP-1; CCL2) in comparison to inoculation with vehicle or UV-inactivated virus.</p> <p>Conclusion</p> <p>Attenuated mengovirus caused a respiratory infection in rats with several days of viral shedding accompanied by a lower airway inflammatory response consisting of neutrophils and lymphocytes. These features suggest that mengovirus-induced airway infection in rodents could be a useful model to define mechanisms of rhinovirus-induced airway inflammation in humans.</p

    Protective Intestinal Effects of Pituitary Adenylate Cyclase Activating Polypeptide

    Get PDF
    Pituitary adenylate cyclase activating polypeptide (PACAP) is an endogenous neuropeptide widely distributed throughout the body, including the gastrointestinal tract. Several effects have been described in human and animal intestines. Among others, PACAP infl uences secretion of intestinal glands, blood fl ow, and smooth muscle contraction. PACAP is a well-known cytoprotective peptide with strong anti-apoptotic, anti-infl ammatory, and antioxidant effects. The present review gives an overview of the intestinal protective actions of this neuropeptide. Exogenous PACAP treatment was protective in a rat model of small bowel autotransplantation. Radioimmunoassay (RIA) analysis of the intestinal tissue showed that endogenous PACAP levels gradually decreased with longer-lasting ischemic periods, prevented by PACAP addition. PACAP counteracted deleterious effects of ischemia on oxidative stress markers and cytokines. Another series of experiments investigated the role of endogenous PACAP in intestines in PACAP knockout (KO) mice. Warm ischemia–reperfusion injury and cold preservation models showed that the lack of PACAP caused a higher vulnerability against ischemic periods. Changes were more severe in PACAP KO mice at all examined time points. This fi nding was supported by increased levels of oxidative stress markers and decreased expression of antioxidant molecules. PACAP was proven to be protective not only in ischemic but also in infl ammatory bowel diseases. A recent study showed that PACAP treatment prolonged survival of Toxoplasma gondii infected mice suffering from acute ileitis and was able to reduce the ileal expression of proinfl ammatory cytokines. We completed the present review with recent clinical results obtained in patients suffering from infl ammatory bowel diseases. It was found that PACAP levels were altered depending on the activity, type of the disease, and antibiotic therapy, suggesting its probable role in infl ammatory events of the intestine

    Lower Respiratory Tract Infection Induced by a Genetically Modified Picornavirus in Its Natural Murine Host

    Get PDF
    Infections with the picornavirus, human rhinovirus (HRV), are a major cause of wheezing illnesses and asthma exacerbations. In developing a murine model of picornaviral airway infection, we noted the absence of murine rhinoviruses and that mice are not natural hosts for HRV. The picornavirus, mengovirus, induces lethal systemic infections in its natural murine hosts, but small genetic differences can profoundly affect picornaviral tropism and virulence. We demonstrate that inhalation of a genetically attenuated mengovirus, vMC0, induces lower respiratory tract infections in mice. After intranasal vMC0 inoculation, lung viral titers increased, peaking at 24 h postinoculation with viral shedding persisting for 5 days, whereas HRV-A01a lung viral titers decreased and were undetectable 24 h after intranasal inoculation. Inhalation of vMC0, but not vehicle or UV-inactivated vMC0, induced an acute respiratory illness, with body weight loss and lower airway inflammation, characterized by increased numbers of airway neutrophils and lymphocytes and elevated pulmonary expression of neutrophil chemoattractant CXCR2 ligands (CXCL1, CXCL2, CXCL5) and interleukin-17A. Mice inoculated with vMC0, compared with those inoculated with vehicle or UV-inactivated vMC0, exhibited increased pulmonary expression of interferon (IFN-α, IFN-β, IFN-λ), viral RNA sensors [toll-like receptor (TLR)3, TLR7, nucleotide-binding oligomerization domain containing 2 (NOD2)], and chemokines associated with HRV infection in humans (CXCL10, CCL2). Inhalation of vMC0, but not vehicle or UV-inactivated vMC0, was accompanied by increased airway fluid myeloperoxidase levels, an indicator of neutrophil activation, increased MUC5B gene expression, and lung edema, a sign of infection-related lung injury. Consistent with experimental HRV inoculations of nonallergic, nonasthmatic human subjects, there were no effects on airway hyperresponsiveness after inhalation of vMC0 by healthy mice. This novel murine model of picornaviral airway infection and inflammation should be useful for defining mechanisms of HRV pathogenesis in humans

    Lung edema in response to inhalation of attenuated mengovirus.

    No full text
    <p>Wet:dry lung weight ratios were measured for lungs harvested on day 2 after intranasal inoculation with 10<sup>6</sup> PFU of attenuated mengovirus, vMC<sub>0</sub>, an equivalent amount of UV-inactivated vMC<sub>0</sub>, or vehicle (n = 9 mice per group). Data are presented as box plots; whiskers indicate the 10th and 90th percentiles. * <i>P</i><0.01 (vMC<sub>0</sub> vs. vehicle or UV-inactivated vMC<sub>0</sub>).</p

    Differences between attenuated mengovirus and HRV in the kinetics of lung viral titers.

    No full text
    <p>Mice received intranasal inoculations of 10<sup>6</sup> PFU of attenuated mengovirus, vMC<sub>0</sub> [A (n = 7 mice per group), B (n = 6 mice per group)], or 5×10<sup>6</sup> PFU of HRV-A01a (C; n = 4 mice per group). Lungs were harvested at the indicated times, and viral titers in lung homogenates were determined by plaque assays. Data are the total amount of virus present in the lung homogenates (virus concentrations were multiplied by lung homogenate volumes). No virus was detected in lungs from vehicle-inoculated mice. Data are presented as box plots. For one HRV-A01a-inoculated mouse at 3 h postinoculation, a value of 1 PFU was assigned for graphing purposes because virus was undetectable. ND, not detectable.</p

    Mucin expression in the lungs in response to inhalation of attenuated mengovirus.

    No full text
    <p>Mice received intranasal inoculations of 10<sup>6</sup> PFU of attenuated mengovirus, vMC<sub>0</sub>, or vehicle (n = 5 mice per group). Levels of (A) MUC5B and (B) MUC5AC mRNA in lungs on day 1 postinoculation were determined by real-time quantitative RT-PCR and normalized to β-actin mRNA levels. * <i>P</i><0.01 (vMC<sub>0</sub> vs. vehicle).</p

    Increased pulmonary expression of CXCL10 and CCL2 in response to inhalation of attenuated mengovirus.

    No full text
    <p>Mice received intranasal inoculations of 10<sup>6</sup> PFU of attenuated mengovirus, vMC<sub>0</sub>, an equivalent amount of UV-inactivated vMC<sub>0</sub>, or vehicle (n = 6 mice per group). Levels of (A) CXCL10 (IP-10) and (B) CCL2 (MCP-1) mRNA in lungs on day 1 postinoculation were determined by real-time quantitative RT-PCR and normalized to β-actin mRNA levels. (C) CCL2 protein levels in BAL fluid on day 2 postinoculation were determined by ELISA. Data are the total amount of CCL2 recovered (ELISA values were multiplied by the BAL fluid volume). ND, not detectable. Data are presented as box plots. * <i>P</i><0.01 (vMC<sub>0</sub> vs. vehicle or UV-inactivated vMC<sub>0</sub>).</p
    corecore