1,393 research outputs found

    On the equivalence between the cell-based smoothed finite element method and the virtual element method

    Get PDF
    We revisit the cell-based smoothed finite element method (SFEM) for quadrilateral elements and extend it to arbitrary polygons and polyhedrons in 2D and 3D, respectively. We highlight the similarity between the SFEM and the virtual element method (VEM). Based on the VEM, we propose a new stabilization approach to the SFEM when applied to arbitrary polygons and polyhedrons. The accuracy and the convergence properties of the SFEM are studied with a few benchmark problems in 2D and 3D linear elasticity. Later, the SFEM is combined with the scaled boundary finite element method to problems involving singularity within the framework of the linear elastic fracture mechanics in 2D

    Adaptive identification and control of structural dynamics systems using recursive lattice filters

    Get PDF
    A new approach for adaptive identification and control of structural dynamic systems by using least squares lattice filters thar are widely used in the signal processing area is presented. Testing procedures for interfacing the lattice filter identification methods and modal control method for stable closed loop adaptive control are presented. The methods are illustrated for a free-free beam and for a complex flexible grid, with the basic control objective being vibration suppression. The approach is validated by using both simulations and experimental facilities available at the Langley Research Center

    AN ALGORITHM FOR RESPONSE AND STABILITY OF LARGE ORDER NON-LINEAR SYSTEMS — APPLICATION TO ROTOR SYSTEMS

    Get PDF
    International audienceA numerical algorithm to calculate the periodic response, stability and bifurcations of a periodically excited non-conservative, Multi-Degree of Freedom (MDOF) system with strong local non-linearities is presented. First, the given large order system is reduced using a fixed-interface component mode synthesis procedure (CMS) in which the degrees of freedom associated with non-linear elements are retained in the physical co-ordinates while all others, whose number far exceeds the number of non-linear DOF, are transformed tomodal coordinates and reduced using real mode CMS. A shooting and continuation method is then applied to the reduced system to solve for the periodic response. Floquet stability theory is used to calculate stability and bifurcations of the periodic response. The algorithm is applied to study the response to imbalance, stability, and bifurcations of a 24 DOF flexible rotor supported on journal bearings. The results indicate that the proposed algorithm, though approximate, can yield very accurate information about dynamic behavior of large order non-linear systems, even with few numbers of retained component modes. The algorithm, which imposes less demand on computer time and memory, is believed to be of considerable potential in analyzing a variety of practical problems

    Intuitionistic Robust Fuzzy Matrix for the Diagnosis of Stress, Anxiety and Hypertension

    Get PDF
    The mathematical model given here attempts to improve precisionin the diagnosis of stress, anxiety, and hypertension using Intuitionisticrobust fuzzy matrix (IRFM). In practice, the imprecise natureof medical documentation and the uncertainty of patient informationfrequently do not provide the appropriate level of confidence in thediagnosis. To that purpose, a novel method based on distinct fuzzymatrices and fuzzy relations is devised, which makes use of the capabilitiesof fuzzy logic in describing, understanding, and exploitingfacts and information that are unclear and lack clarity. With the assistanceof 30 doctors, a medical knowledge base is created during theprocedure. The model obtained 95.55%t accuracy in the diagnosis,demonstrating its utility

    A volume-averaged nodal projection method for the Reissner-Mindlin plate model

    Get PDF
    We introduce a novel meshfree Galerkin method for the solution of Reissner-Mindlin plate problems that is written in terms of the primitive variables only (i.e., rotations and transverse displacement) and is devoid of shear-locking. The proposed approach uses linear maximum-entropy approximations and is built variationally on a two-field potential energy functional wherein the shear strain, written in terms of the primitive variables, is computed via a volume-averaged nodal projection operator that is constructed from the Kirchhoff constraint of the three-field mixed weak form. The stability of the method is rendered by adding bubble-like enrichment to the rotation degrees of freedom. Some benchmark problems are presented to demonstrate the accuracy and performance of the proposed method for a wide range of plate thicknesses
    • …
    corecore