1,083 research outputs found
Solving Set Constraint Satisfaction Problems using ROBDDs
In this paper we present a new approach to modeling finite set domain
constraint problems using Reduced Ordered Binary Decision Diagrams (ROBDDs). We
show that it is possible to construct an efficient set domain propagator which
compactly represents many set domains and set constraints using ROBDDs. We
demonstrate that the ROBDD-based approach provides unprecedented flexibility in
modeling constraint satisfaction problems, leading to performance improvements.
We also show that the ROBDD-based modeling approach can be extended to the
modeling of integer and multiset constraint problems in a straightforward
manner. Since domain propagation is not always practical, we also show how to
incorporate less strict consistency notions into the ROBDD framework, such as
set bounds, cardinality bounds and lexicographic bounds consistency. Finally,
we present experimental results that demonstrate the ROBDD-based solver
performs better than various more conventional constraint solvers on several
standard set constraint problems
Breaking Symmetries in Graph Representation
There are many complex combinatorial problems
which involve searching for an undirected graph
satisfying a certain property. These problems are
often highly challenging because of the large number
of isomorphic representations of a possible solution.
In this paper we introduce novel, effective
and compact, symmetry breaking constraints for
undirected graph search. While incomplete, these
prove highly beneficial in pruning the search for a
graph. We illustrate the application of symmetry
breaking in graph representation to resolve several
open instances in extremal graph theory
Insulation for cryogenic tanks has reduced thickness and weight
Dual seal insulation, consisting of an inner layer of sealed-cell Mylar honeycomb core and an outer helium purge channel of fiber glass reinforced phenolic honeycomb core, is used as a thin, lightweight insulation for external surfaces of cryogenic-propellant tanks
Determination of the hydrolysis constant in the biochemical methane potential test of municipal solid waste
This article provides the methane yield of municipal solid waste and its main constituents using the biochemical ethane potential (BMP) test. The methane yield of kitchen waste (KW), paper waste (PW), and garden waste (GW) were 357 ( – 24.7), 147 ( – 17.1), and 114 ( – 0.6) mL CH4/g VS, respectively. The hydrolysis constant in the first order kinetic model was 0.25, 0.095, and 0.121 d- 1 for KW, PW, and GW, respectively. The effect of the inoculum to substrate (I/S) ratio in the BMP test was investigated. Methane yields of 297.4 ( – 18.6), 293.5 ( – 33.9), and 378.2 ( – 10.3) mL CH4/g VS were found at I/S ratios of 1.4, 7.2, and 12.9, respectively, whereas the hydrolysis constants were 0.112, 0.151, and 0.221 d- 1. A new method based on the production of soluble chemical oxygen demand (SCOD) while selectively inhibiting methanogenesis has been used to determine the hydrolysis constant (0.25 d- 1) according to its true definition, which is the conversion of particulate COD to SCOD, showing that the method based on methane evolution can underestimate the actual value when hydrolysis is not the rate-limiting step
Contribution of acetic acid to the hydrolysis of lignocellulosic biomass under abiotic conditions
Acetic acid was used in abiotic experiments to adjust the solution pH and investigate its influence on the chemical hydrolysis of the Organic Fraction of Municipal Solid Waste (OFMSW). Soluble chemical oxygen demand (SCOD) was used to measure the hydrolysis under oxidative conditions (positive oxidation–reduction potential values), and pH 4 allowed for 20% (±2%) of the COD added to be solubilized, whereas only 12% (±1%) was solubilized at pH7. Under reducing conditions (negative oxidation–reduction potential values) and pH 4, 32.3% (±3%) of the OFMSW was solubilized which shows that acidogenesis at pH 4 during the anaerobic digestion of solid waste can result in chemical hydrolysis. In comparison, bacterial hydrolysis resulted in 54% (±6%) solubilizatio
Yoga as a Didactic Tool for Musculoskeletal Anatomy for First Year Medical Students
Introduction: Medical education requires students to adjust their study habits. Active learning has been shown to enhance understanding, especially regarding anatomy. Wellness has become increasingly emphasized for medical professionals; thus, it is important for medical students to develop wellness habits to mitigate burnout. Yoga is commonly practiced with a focus on wellness and flow of movements. Yoga as an educational and wellness tool integrated into medical gross anatomy is a worthwhile pursuit. This study describes a series of anatomy-based yoga videos designed to meld wellness activities with musculoskeletal anatomy review for preclinical medical students.
Approach: Six novel yoga lessons were developed as supplemental video resources for first year medical students enrolled in a course that incorporates musculoskeletal anatomy. Each of the yoga lessons guided student users through a series of basic yoga poses that incorporate bones, muscles, and joints that establish each posture. The intent of the video series was to provide an opportunity to practice meditation through movement in the form of yoga, while concurrently providing a review of relevant anatomical content.
Discussion: Incorporating yoga as a supplemental video resource into medical anatomy education offers opportunities not only to promote wellness but to provide a kinesthetic review of musculoskeletal anatomy. Formally incorporation of this content into the curriculum and with clinical application into the videos may promote increased student participation and interest
Inorganic fouling of an anaerobic membrane bioreactor treating leachate from the organic fraction of municipal solid waste (OFMSW) and a polishing aerobic membrane bioreactor
The treatment of leachate (Average TCOD = 11.97 g/L, 14.4% soluble) from the organic fraction of municipal solid waste was investigated using a Submerged Anaerobic Membrane BioReactor (SAMBR), followed by an aerobic membrane bioreactor (AMBR) to polish this effluent. This paper investigated the exact nature and composition of the inorganic precipitate in each of the reactors in the process. The flux decreased due to precipitation of calcium as monohydrocalcite (CaCO3�H2O) containing traces of metals onto the SAMBR membrane because of high CO2 partial pressures. Precipitation of calcium in the AMBR was also observed due to a higher pH. In this case, phosphorus also precipitated with calcium in two different phases: the background layer contained calcium, oxygen, carbon and small amounts of phosphorus (2–6.7%), while flakes containing calcium, oxygen and higher amounts of phosphorus (10–17%) were probably hydroxyapatite (Ca5(PO4)3OH)
- …