12 research outputs found

    A visual processing advantage for young-adolescent deaf observers: Evidence from face and object matching tasks

    Get PDF
    It is unresolved whether the permanent auditory deprivation that deaf people experience leads to the enhanced visual processing of faces. The current study explored this question with a matching task in which observers searched for a target face among a concurrent lineup of ten faces. This was compared with a control task in which the same stimuli were presented upside down, to disrupt typical face processing, and an object matching task. A sample of young-adolescent deaf observers performed with higher accuracy than hearing controls across all of these tasks. These results clarify previous findings and provide evidence for a general visual processing advantage in deaf observers rather than a face-specific effect

    Changes in Early Cortical Visual Processing Predict Enhanced Reactivity in Deaf Individuals

    Get PDF
    Individuals with profound deafness rely critically on vision to interact with their environment. Improvement of visual performance as a consequence of auditory deprivation is assumed to result from cross-modal changes occurring in late stages of visual processing. Here we measured reaction times and event-related potentials (ERPs) in profoundly deaf adults and hearing controls during a speeded visual detection task, to assess to what extent the enhanced reactivity of deaf individuals could reflect plastic changes in the early cortical processing of the stimulus. We found that deaf subjects were faster than hearing controls at detecting the visual targets, regardless of their location in the visual field (peripheral or peri-foveal). This behavioural facilitation was associated with ERP changes starting from the first detectable response in the striate cortex (C1 component) at about 80 ms after stimulus onset, and in the P1 complex (100–150 ms). In addition, we found that P1 peak amplitudes predicted the response times in deaf subjects, whereas in hearing individuals visual reactivity and ERP amplitudes correlated only at later stages of processing. These findings show that long-term auditory deprivation can profoundly alter visual processing from the earliest cortical stages. Furthermore, our results provide the first evidence of a co-variation between modified brain activity (cortical plasticity) and behavioural enhancement in this sensory-deprived population

    Superior spatial touch:improved haptic orientation processing in deaf individuals

    No full text
    <p>The present study investigated haptic spatial orientation processing in deaf signers, hearing sign language interpreters, and hearing controls. Blindfolded participants had to set two bars parallel in the horizontal plane, with either a 2-s or a 10-s delay between inspection of the reference bar and the setting of the test bar. The deaf group outperformed the other two groups which did not differ from each other. Together these results indicate that deaf individuals can better identify the allocentric spatial coordinates of haptically inspected orientations. These results are discussed in terms of the possible neurocognitive consequences of auditory deprivation.</p>
    corecore