423 research outputs found

    Divergent Antigen-Specific Cellular Immune Responses during Asymptomatic Subclinical and Clinical States of Disease in Cows Naturally Infected with Mycobacterium avium subsp. paratuberculosis

    Get PDF
    Infection of the host with Mycobacterium avium subsp. paratuberculosis results in chronic and progressive enteritis that traverses both subclinical and clinical stages. The mechanism(s) for the shift from an asymptomatic subclinical disease state to advanced clinical disease is not fully understood. In the present study, naturally infected dairy cattle were divided into subclinical and clinical infection groups, along with noninfected control cows of similar parity, to study host immune responses in different stages of infection. Both infection groups had higher levels of secretion of gamma interferon (IFN-), tumor necrosis factor-alpha (TNF-), and interleukin-2 (IL-2) than control cows, whereas only clinical cows had increased secretion of IL-10, IL-12, and IL-18 upon stimulation of peripheral blood mononuclear cells (PBMCs) with antigen. Conversely, secretion of IL-17 was decreased for clinical cows compared to subclinical and control cows. Proinflammatory cytokine genes were upregulated only for subclinical cows, whereas increased IL-10 and IL-17 gene expression levels were observed for both infection groups. Increased CD4, CD8, and T cell receptor-positive (TCR) T cells were observed for subclinical cows compared to clinical cows. Although clinical cows expressed antigen-specific immune responses, the profile for subclinical cows was one of a dominant proinflammatory response to infection. We reason that a complex coordination of immune responses occurs during M. avium subsp. paratuberculosis infection, with these responses shifting as the host transitions through the different stages of infection and disease (subclinical to clinical). A further understanding of the series of events characterized by Th1/Th2/Th17 responses will provide mechanisms for disease progression and may direct insightful intervention strategies

    Killing of Mycobacterium avium subspecies paratuberculosis within macrophages

    Get PDF
    BACKGROUND: Mycobacterium avium subspecies paratuberculosis (M. paratuberculosis) is a facultative intracellular pathogen that resides within host macrophages during infection of ruminant animals. We examined survival of M. paratuberculosis infections within cultured macrophages to better understand the interplay between bacterium and host. RESULTS: Serial plating of M. paratuberculosis infected macrophage lysates on Herold's egg yolk medium showed that mycobacterial replication takes place between 0 and 24 hours post-infection. This initial growth phase was followed by a steady decline in viability over the next six days. Antibodies against M. paratuberculosis were affinity purified and used in conjunction with transmission electron microscopy to track the development of intracellular bacilli. Immunogold labeling of infected macrophages with antibody against M. paratuberculosis showed degraded intracellular mycobacteria that were unrecognizable by morphology alone. Conversely, when macrophages were heavily infected with M. paratuberculosis, no degraded forms were observed and macrophages were killed. CONCLUSIONS: We present a general description of M. paratuberculosis survival within cultured macrophages using transmission electron microscopy and viability counts. The results of this study provides further insight surrounding M. paratuberculosis-macrophage infections and have implications in the pathogenesis of M. paratuberculosis, a pathogen known to persist inside cattle for many years

    Immunoreactivity of the Mycobacterium avium subsp. paratuberculosis 19-kDa lipoprotein

    Get PDF
    BACKGROUND: The Mycobacterium tuberculosis 19-kDa lipoprotein has been reported to stimulate both T and B cell responses as well as induce a number of Th1 cytokines. In order to evaluate the Mycobacterium avium subsp. paratuberculosis (M. avium subsp. paratuberculosis) 19-kDa lipoprotein as an immunomodulator in cattle with Johne's disease, the gene encoding the 19-kDa protein (MAP0261c) was analyzed. RESULTS: MAP0261c is conserved in mycobacteria, showing a 95% amino acid identity in M. avium subspecies avium, 84% in M. intracellulare and 76% in M. bovis and M. tuberculosis. MAP0261c was cloned, expressed, and purified as a fusion protein with the maltose-binding protein (MBP-19 kDa) in Escherichia coli. IFN-γ production was measured from 21 naturally infected and 9 control cattle after peripheral blood mononuclear cells (PBMCs) were stimulated with a whole cell lysate (WCL) of M. avium subsp. paratuberculosis or the recombinant MBP-19 kDa. Overall, the mean response to MBP-19 kDa was not as strong as the mean response to the WCL. By comparison, cells from control, non-infected cattle did not produce IFN-γ after stimulation with either WCL or MBP-19 kDa. To assess the humoral immune response to the 19-kDa protein, sera from cattle with clinical Johne's disease were used in immunoblot analysis. Reactivity to MBP-19 kDa protein, but not MBP alone, was observed in 9 of 14 infected cattle. Antibodies to the 19-kDa protein were not observed in 8 of 9 control cows. CONCLUSIONS: Collectively, these results demonstrate that while the 19-kDa protein from M. avium subsp. paratuberculosis stimulates a humoral immune response and weak IFN-γ production in infected cattle, the elicited responses are not strong enough to be used in a sensitive diagnostic assay

    Comparison of Sheep, Goats, and Calves as Infection Models for Mycobacterium avium subsp. paratuberculosis

    Get PDF
    Animal infection models to study Mycobacterium avium subsp. paratuberculosis (MAP) infection are useful for evaluating the efficacy of vaccines and other therapeutics for the prevention or treatment of infection. The goal of the present study was to compare smaller ruminants, sheep and goats, with calves as infection models. Neonatal sheep, goats, and calves (n = 4) received 109 cfu of a cattle isolate of MAP in milk replacer on days 0, 3 and 6 in a 12-month study and sampled monthly thereafter. Results demonstrated a robust antigen-specific IFN-γ response at 90 days post-inoculation for sheep and goats, with lower responses noted for calves. By 360 days, IFN-γ responses were 50 and 82% higher for calves than for goats and sheep, respectively. Although MAP- specific antibody responses were first observed in sheep at 90 days, calves had higher antibody responses throughout the remainder of the study. Following pass-through shedding on day 7, fecal shedding was fairly negligible across treatments but remained higher for calves throughout the study. Colonization of tissues was variable within treatment group and was higher for calves and sheep for the majority of tissues. Upon antigen stimulation of PBMCs, higher populations of CD4 + T cells cells and lower populations of γδ TCR + and NK cells were observed for goats and calves compared to sheep. Relative gene expression of IL-4, IL-12, and IL-17 in PBMCs was higher in goats, corresponding to lower tissue colonization with MAP. These data suggest that ruminant species are fairly comparable as infection models for MAP, but discrete differences in host responses to MAP infection exist between species

    Transcriptional Profiling of Ileocecal Valve of Holstein Dairy Cows Infected with Mycobacterium avium subsp. Paratuberculosis

    Get PDF
    Johne’s disease is a chronic infection of the small intestine caused by Mycobacterium avium subspecies paratuberculosis (MAP), an intracellular bacterium. The events of pathogen survival within the host cell(s), chronic inflammation and the progression from asymptomatic subclinical stage to an advanced clinical stage of infection, are poorly understood. This study examines gene expression in the ileocecal valve (ICV) of Holstein dairy cows at different stages of MAP infection. The ICV is known to be a primary site of MAP colonization and pro-vides an ideal location to identify genes that are relevant to the progression of this disease. RNA was prepared from ICV tissues and RNA-Seq was used to compare gene transcription between clinical, subclinical, and uninfected control animals. Interpretation of the gene expression data was performed using pathway analysis and gene ontology categories containing multiple differentially expressed genes. Results demonstrated that many of the pathways that had strong differential gene expression between uninfected control and clinical cows were related to the immune system, such as the T- and B-cell receptor signaling, apoptosis, NOD-like receptor signaling, and leukocyte transendothelial migration pathways. In contrast, the comparison of gene transcription between control and subclinical cows identified pathways that were primarily involved in metabolism. The results from the comparison between clinical and subclinical animals indicate recruitment of neutrophils, up-regulation of lysosomal peptidases, increase in immune cell transendothelial migration, and modifications of the extracelluar matrix. This study provides important insight into how cattle respond to a natural MAP infection at the gene transcription level within a key target tissue for infection

    Characterization of Ethanol Extracted Cell Wall Components of Mycobacterium avium Subsp. paratuberculosis

    Get PDF
    Antigens extracted using ethanol (EtOH) and incorporated in the EtOH vortex ELISA (EVELISA) test have previously shown high specificity and sensitivity for detecting Mycobacterium avium subspecies paratuberculosis (Map) and M. bovis infections in cattle. The objective of this study is to define the components present in the EtOH extract. We show that this extract is composed of lipid, carbohydrate, and proteins on the surface of the bacilli, and that EtOH removes the outer layer structure of Map which comprise these elements. To identify proteins, polyclonal antibodies to the EtOH prep were produced and used to screen a Map genomic expression library. Seven overlapping clones were identified with a single open reading frame, MAP_0585, common to all. MAP_0585, which encodes a hypothetical protein, was recombinantly produced and used to demonstrate strong reactivity in sera from hyperimmunized rabbits, but this protein is not strongly immunogenic in cattle with Johne’s disease. A panel of monoclonal antibodies was used to determine the presence of additional proteins in the EtOH extract. These antibodies demonstrated that a well-known antigen, termed MPB83, is present in M. bovis EtOH extracts and a fatty acid desaturase (MAP_2698c) is present in Map EtOH extracts, while lipoarabinomannan was common to both. The lipid and carbohydrate components of the extract were analyzed using thin layer chromatography and lectin binding, respectively. Lectin biding and protease treatment of the EtOH extract suggest the antigenic component is carbohydrate and not protein. These results give further insight into this important antigen prep for detecting mycobacterial diseases of cattle

    Evaluation of protection in a mouse model after vaccination with Mycobacterium avium subsp. paratuberculois protein cocktails

    Get PDF
    Whole-cell vaccines successfully reduce signs of clinical disease and fecal shedding of Mycobacterium avium subsp. paratuberculosis (MAP), however, these vaccines have some limitations. The present study was conducted to identify MAP proteins that might be candidates for the development of an improved vaccine. MAP proteins were screened for immunogenicity in naturally infected cattle and selected based upon reactivity in the interferon- (IFN-) and Western blot assays. Proteins (MAP1087, MAP1204, MAP1272c, and MAP2077c) were arrayed into 4 overlapping cocktails containing 3 proteins each. The efficacy of the proteins within these cocktails as vaccine candidates was evaluated by subcutaneous immunization of mice, followed by challenge with live, virulent MAP. All MAP protein cocktails significantly reduced the recovery of live MAP from the ileum, while cocktails 1 and 3 reduced colonization in the liver. No significant differences were seen in the mesenteric lymph node or spleen, however, cocktail 1 reduced viable MAP in the mesenteric lymph node compared to other treatments. Stimulation of splenocytes upregulated antigen-specific IFN- and IL-23 secretion in all treatment groups, regardless of vaccination. Interestingly, IL-4 was moderately downregulated for vaccinates compared to control infected mice. An increase in total CD25 expression was noted for 3 of the 4 vaccinate groups upon stimulation of splenocytes with a whole-cell sonicate of MAP, with this effect becoming more significant within CD4CD25+ and CD8CD25+ subpopulations. The present study demonstrated that MAP proteins are useful as vaccine candidates to reduce MAP tissue burden

    Mycobacterium avium Subspecies paratuberculosis Recombinant Proteins Modulate Antimycobacterial Functions of Bovine Macrophages

    Get PDF
    It has been shown that Mycobacterium avium subspecies paratuberculosis (M. paratuberculosis) activates the Mitogen Activated Protein Kinase (MAPK) p38 pathway, yet it is unclear which components of M. paratuberculosis are involved in the process. Therefore, a set of 42 M. paratuberculosis recombinant proteins expressed from coding sequences annotated as lipoproteins were screened for their ability to induce IL-10 expression, an indicator of MAPKp38 activation, in bovine monocyte-derived macrophages. A recombinant lipoprotein, designated as MAP3837c, was among a group of 6 proteins that strongly induced IL-10 gene transcription in bovine macrophages, averaging a 3.1-fold increase compared to non-stimulated macro- phages. However, a parallel increase in expression of IL-12 and TNF-α was only observed in macrophages exposed to a subset of these 6 proteins. Selected recombinant proteins were further analyzed for their ability to enhance survival of M. avium within bovine macrophages as measured by recovered viable bacteria and nitrite production. All 6 IL-10 inducing MAP recombinant proteins along with M. paratuberculosis cells significantly enhanced phosphorylation of MAPK-p38 in bovine macrophages. Although these proteins are likely not post translationally lipidated in E. coli and thus is a limitation in this study, these results form the foundation of how the protein component of the lipoprotein interacts with the immune system. Collectively, these data reveal M. paratuberculosis proteins that might play a role in MAPK-p38 pathway activation and hence in survival of this organism within bovine macrophages

    Envelope protein complexes of Mycobacterium avium subsp. paratuberculosis and their antigenicity

    Get PDF
    Mycobacterium avium subsp. paratuberculosis (MAP) is the causative agent of Johne’s disease, a chronic enteric disease of ruminant animals. In the present study, blue native PAGE electrophoresis and 2D SDS-PAGE were used to separate MAP envelope protein complexes, followed by mass spectrometry (MS) to identify individual proteins within the complexes. Identity of individual proteins within complexes was further confirmed by MS upon excision of spots from 2D SDS-PAGE gels. Among the seven putative membrane complexes observed, major membrane protein (MAP2121c), a key MAP antigen involved in invasion of epithelial cells, was found to form a complex with cysteine desulfurase (MAP2120c). Other complexes found included those involved in energy metabolism (succinate dehydrogenase complex) as well as a complex formed by Cfp29, a characterized T cell antigen of Mycobacterium tuberculosis. To determine antigenicity of proteins, Western blot was performed on replicate 2D SDS-PAGE gels with sera from noninfected control cows (n = 9) and naturally infected cows in the subclinical (n = 10) and clinical (n = 13) stages of infection. Clinical animals recognized MAP2121c in greater proportion than subclinical and control cows, whereas cysteine desulfurase recognition was not differentiated by infection status. To further characterize antigenicity, recombinant proteins were expressed for 10 of the proteins identified and evaluated in an interferon-gamma (IFN-g) release assay as well as immunoblots. This study reveals the presence of protein complexes in the cell envelope of MAP, suggesting protein interactions in the envelope of this pathogen. Furthermore the identification of antigenic proteins with potential as diagnostic targets was characterized

    Phenotypes of macrophages present in the intestine are impacted by stage of disease in cattle naturally infected with Mycobacterium avium subsp. paratuberculosis

    Get PDF
    Macrophages play an important role in the host immune response to Mycobacterium avium subsp. paratuberculosis (MAP) infection, however, MAP is able to disrupt normal macro- phage functions to avoid destruction. It is unclear whether the phenotypes of macrophages present in the target tissue play a role in the inability to clear MAP infection. The aim of this study was to identify macrophage phenotypes (host defense or resolution and repair) present within the bovine ileum of naturally infected cattle, as well as to ascertain abundance of each macrophage phenotype present during different stages of MAP infection. Immunofluo- rescent (IF) labeling was performed on frozen bovine mid-ileal tissue sections collected from 28 Holstein dairy cows. Comprehensive IF staining for cytokines, such as IFN-γ, IL- 1Ra, IL-1β, IL-10, TGF-β, TNF-α, and uNOS, along with markers such as CD163, CD206, and TLR4, served to define the macrophage phenotypes. Overall, cows in the clinical stage of disease demonstrated significantly higher numbers of resolution and repair macrophages and lower numbers of host defense macrophages in the ileal tissue. Interestingly, subclinically affected cows with asymptomatic disease had a nearly equal ratio of host defense and resolution and repair macrophage phenotypes, whereas macrophage phenotype was skewed to a host defense macrophage in the tissues of the control noninfected cows. The preponderance of M2-like resolution and repair phenotype for macrophages in the tissues of cows with clinical disease would explain why the host fails to control and/or clear the infection, leading to a higher MAP burden. The results of the current study offer insight into the disparate macrophage phenotypes present in the bovine ileum during different stages of infection
    • …
    corecore