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RESEARCH ARTICLE

Mycobacterium avium Subspecies
paratuberculosis Recombinant Proteins
Modulate Antimycobacterial Functions of
Bovine Macrophages
John P. Bannantine1, Judith R. Stabel1, Elizabeth Laws2, Maria Clara D. Cardieri2,
Cleverson D. Souza2*

1 National Animal Disease Center, USDA-Agricultural Research Service, Ames, Iowa, United States of
America, 2 Department of Veterinary Clinical Sciences, Washington State University, Pullman, Washington,
United States of America

* souza@vetmed.wsu.edu

Abstract
It has been shown thatMycobacterium avium subspecies paratuberculosis (M. paratubercu-
losis) activates theMitogen Activated Protein Kinase (MAPK) p38 pathway, yet it is unclear

which components ofM. paratuberculosis are involved in the process. Therefore, a set of 42

M. paratuberculosis recombinant proteins expressed from coding sequences annotated as li-

poproteins were screened for their ability to induce IL-10 expression, an indicator of MAPKp38

activation, in bovine monocyte-derived macrophages. A recombinant lipoprotein, designated

as MAP3837c, was among a group of 6 proteins that strongly induced IL-10 gene transcription

in bovine macrophages, averaging a 3.1-fold increase compared to non-stimulatedmacro-

phages. However, a parallel increase in expression of IL-12 and TNF-αwas only observed in

macrophages exposed to a subset of these 6 proteins. Selected recombinant proteins were

further analyzed for their ability to enhance survival ofM. aviumwithin bovine macrophages as

measured by recovered viable bacteria and nitrite production. All 6 IL-10 inducing MAP recom-

binant proteins along withM. paratuberculosis cells significantly enhanced phosphorylation of

MAPK-p38 in bovine macrophages. Although these proteins are likely not post translationally

lipidated in E. coli and thus is a limitation in this study, these results form the foundation of how

the protein component of the lipoprotein interacts with the immune system. Collectively, these

data revealM. paratuberculosis proteins that might play a role in MAPK-p38 pathway activa-

tion and hence in survival of this organismwithin bovine macrophages.

Introduction
Mycobacterium avium subsp. paratuberculosis (M. paratuberculosis) is a pathogen with a broad
host-range characterized by the capacity to evade the immune system and to cause severe
chronic intestinal granulomatous inflammation. Although it can infect multiple species, it is

PLOSONE | DOI:10.1371/journal.pone.0128966 June 15, 2015 1 / 14

OPEN ACCESS

Citation: Bannantine JP, Stabel JR, Laws E, D.
Cardieri MC, Souza CD (2015) Mycobacterium avium
Subspecies paratuberculosis Recombinant Proteins
Modulate Antimycobacterial Functions of Bovine
Macrophages. PLoS ONE 10(6): e0128966.
doi:10.1371/journal.pone.0128966

Academic Editor: Srinand Sreevatsan, University of
Minnesota, UNITED STATES

Received: April 2, 2015

Accepted: May 4, 2015

Published: June 15, 2015

Copyright: This is an open access article, free of all
copyright, and may be freely reproduced, distributed,
transmitted, modified, built upon, or otherwise used
by anyone for any lawful purpose. The work is made
available under the Creative Commons CC0 public
domain dedication.

Data Availability Statement: All relevant data are
within the paper.

Funding: The authors have no support or funding to
report.

Competing Interests: The authors have declared
that no competing interests exist.

http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0128966&domain=pdf
https://creativecommons.org/publicdomain/zero/1.0/


primarily a disease problem in ruminants, which include cattle, sheep and goats [1]. The lack
of a complete understanding of the host immune response against this pathogen has hindered
the development of an effective vaccine. A sustained research effort has been focused on the bi-
ology ofM. paratuberculosis to improve our knowledge and understanding of the infection
process [1, 2]. The dairy industry incurs substantial economic losses due to reduced milk pro-
duction, premature culling and reduced slaughter value [3]. The bacterium is shed in the feces
and milk of infected animals, primarily in the clinical phase of disease [4]. Transmission of
disease can occur by ingestion of the bacterium through manure-contaminated feedstuffs and
pastures or by colostrum and milk, passed from the infected dam to the calf [4, 5].

Pathogenic mycobacteria interfere with the phagosome maturation process, but the precise
mechanism has not been fully detailed [6].M. paratuberculosis is known to survive within mac-
rophages by impairing nitric oxide production [7] and has been shown to resist physiological
concentrations of nitric oxide [8]. However,M. paratuberculosis appears susceptible to IFN-γ
induced activation of cultured macrophages which supports the fact that elevated levels of
IFN-γ are present in cows with subclinical Johne’s disease and the cytokine appears important
for controlling mycobacterial infection [9]. Nonetheless, addition of IFN-γ toM. paratubercu-
losis-infected macrophage cultures does not appear to promote killing of the bacteria [7, 8, 10].
Another mechanism by whichM. paratuberculosis survives within macrophages is by inhibit-
ing phagosome acidification and maturation. Phagosomes containingM. paratuberculosis do
not accumulate lysosomal markers and do not acidify lower than pH 6.3 in J774 macrophages
[11], indicating a failure of the phagosome to mature into a phagolysosome.

Previous studies showed thatM. paratuberculosis infection of bovine macrophages results
in increased IL-10 transcription and decreased IL-12 transcription [12, 13], a gene expression
pattern that promotes interaction with the innate immune receptor Toll-like receptor 2 (TLR2)
and activation of intracellular immune cytokine regulator, MAPKp38, in bovine macrophages
[14, 15]. Mitogen Activated Protein kinases (MAPK) are stress activated kinases with the
MAPKp38 kinase existing as four isoforms, alpha, beta, gamma and delta [16]. In the case of
p38 alpha, it is the sites Thr180/Tyr182 that become dual phosphorylated, signaling activation
within the cell. MAPKp38 is activated as a result of cellular stresses, most notably the presence
of inflammatory cytokines [16]. Because the MAPKp38 pathway is a mechanism for suppres-
sion of antimicrobial responses within macrophages, activation of this pathway could enable
intracellular survival ofM. paratuberculosis. It also induces production of the anti-inflammato-
ry cytokine interleukin (IL)-10 [13, 14]. Induction of IL-10 has been described as playing key
roles in dampening the immune system, favoringM. paratuberculosis survival within host cells
[17].

Conversely, tumor necrosis factor (TNF)-α is produced by macrophages and dendritic cells
as a primary response to infections and tissue damage [18]. TNF-αplays an important role in
activation and recruitment of leukocytes to inflamed tissue [18], and has been demonstrated to
be involved in the host-defense againstM. tuberculosis [19]. However, TNF-α is also associated
with excessive inflammation and immunopathology in infections and autoimmune diseases.
The specific role of the MAPKp38 pathway in phagosome maturation during mycobacterial in-
fection is not completely understood; however, it has been shown thatM. paratuberculosis in-
fection of cultured bovine macrophages results in a rapid phosphorylation of MAPKp38 [14].
The pathogenic pathway that initiates withM. paratuberculosis-TLR2 engagement leading to
activation of the MAPKp38 pathway and culminating with high levels of IL-10 production can
also be exploited to rationally design a critically needed vaccine againstM. paratuberculosis.

Lipoproteins are involved in a variety of functions including cell wall synthesis, adhesion,
transmembrane signaling and anchoring proteins to the cell membrane [20]. It is known that
mycobacterial lipoproteins are recognized by TLR [21]. Mannosylated lipoarabinomannan
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(Man-LAM) is a mannose-capped lipoglycan cell wall component of pathogenic mycobacteria
that was previously shown to induce strong expression of IL-10 [22]. Since Man-LAM contains
lipid and lipoproteins are part of a larger group of microbial molecules that are called patho-
gen-associated molecular patterns (PAMPs) that interact with TLRs [23–25], we reasoned that
lipoproteins may be involved in MAPKp38 activation. Furthermore, two lipoproteins that re-
sult in attenuation ofM. tuberculosis when disrupted include LpqS [26] and LspA [25]. There-
fore, theM. paratuberculosis genome was searched for all genes annotated as lipoproteins and
they were expressed and purified from E. coli and used to test activation of MAPKp38, ability
to stimulate expression of IL-10 and its capacity to prevent killing ofM. avium subspecies
avium (M. avium) by bovine macrophages. At least two recombinant proteins were discovered
that have modular effects on macrophage-mycobacterial interactions. Genes encoding these re-
combinant proteins are considered targets for constructing directed knockout mutations to test
attenuation in bovine macrophages.

Materials and Methods

Monocyte isolation and macrophage generation
All work involving animals was conducted in accordance with the recommendations in the in-
stitutional guidelines and approved animal care and use committee (IACUC) protocols at
Washington State University. All other experiments were carried out in accordance with the
Washington State Universities’ Institutional Biosafety Committee (IBC) approved protocol
number 1190 along with and the National Animal Disease Center’s IBC-0261 protocol.

Blood samples used for isolation of monocytes were collected from three healthy adult Hol-
stein dairy cows that tested negative for paratuberculosis as determined by culture and IS900
PCR analysis of fecal samples. Peripheral blood mononuclear cells were isolated by centrifuga-
tion on a Percoll density gradient as described [12]. Briefly, blood was layered onto 50 mL coni-
cal tubes containing Histopaque 1077 (Sigma-Aldrich, USA), and following density gradient
centrifugation (500 x g for 20 minutes) at room temperature, peripheral blood mononuclear
cells (PBMC) were collected. Thereafter, PBMCs were washed twice with sterile phosphate-
buffered saline (PBS; Invitrogen, Life Technologies, USA) before resuspending cells in PBS.
Monocytes were then isolated using microbeads conjugated with mouse anti-human CD14 an-
tibody (isotype mouse IgG2a; Miltenyi Biotec Ltd., San Diego, USA), which has been shown to
be cross-reactive with bovine monocytes [27]. The isolation was performed according to the
manufacturers’ instructions. The identity and purity of monocytes (>97%) was determined by
flow cytometry using an anti-CD14 fluorescein-labeled antibody (data not shown). Purified
monocytes were seeded at 2x106 per well in 12-well tissue culture plates containing Dulbecco's
Modified Eagle medium with high glucose (Invitrogen, Life Technologies, USA) with 10% heat
inactivated fetal calf serum (Sigma-Aldrich, USA), gentamicin (5 mg/ml; Sigma-Aldrich,
USA), 100 ng/mL GM-CSF (Kingfisher, USA) and 1mM β-mercaptoethanol (Sigma-Aldrich,
USA). Subsequently, cells were incubated at 37°C in a 5% CO2 humidified atmosphere. On day
7 confluent macrophages were used in all described experiments.

Culture conditions forMycobacterium avium subspecies
M. paratuberculosis K-10 andM. avium subspecies avium strain ATCC 35716, originally isolat-
ed from cattle, was obtained from the American Type Culture Collection, USA.M. avium cells
were grown to a concentration of approximately 108 CFU/ml, washed, and resuspended in
Middlebrook broth containing Oleic Albumin Dextrose Catalase Growth Supplement, and
Tween 80. Viability of the organisms added to macrophage cultures varied between 85% and
95% as determined by propidium iodide exclusion (data not shown). Immediately before
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addition to macrophage cultures, organisms were washed in warm PBS and resuspended in
RPMI1640 medium without antibiotics.M. paratuberculosis was cultured only for the MAPK-
p38 activation experiment.

Production and purification of recombinantM. paratuberculosis proteins
M. paratuberculosis genes annotated as lipoproteins were selected for cloning into the pMAL-
c2x expression vector and transformed into E. coli DH5α. All clones were confirmed to be
correct and in-frame with the maltose binding protein by DNA sequencing. To obtain the
MBP-lacZ alpha peptide control protein, the native pMAL-c2x vector, without a cloned insert,
was expressed in the same way as theM. paratuberculosis recombinant clones. Confirmed
transformants were cultured, induced with IPTG and recombinant fusion proteins purified as
described previously [28]. The only modification was that proteins eluted off the amylose resin
column were collected and loaded onto a second amylose column to maximize removal of po-
tential LPS contamination. LPS contamination was ruled out for a selection of these proteins
using the Limulus amebocyte lysate gel clot assay (Lonza).

Infection and RNA extraction of cultured macrophages
M. avium organisms (MOI: 10 bacilli/macrophage) were added to cell cultures with and with-
out addition ofM. paratuberculosis recombinant proteins (5 ug/ml) and incubation was con-
tinued at 37°C in 5% CO2. Cellular mRNA was harvested from plates at 2 hours using the
RNeasy kit (Qiagen, USA) following the manufacturer instructions. The RNA purity was as-
sessed by measuring the 260/280 ratio with Nanodrop (Nanodrop Products, Wilmington,
USA). Integrity of RNA preparations was assessed by use of RNA agarose gel electrophoresis.
As a control for DNA contamination, a direct PCR was performed to confirm the absence of β-
actin amplification in RNA samples. RNA samples were stored in 10 μL aliquots at -80°C until
further processing.

Determination of cytokine gene expression by quantitative real time-
PCR
Genomic DNA was removed from mRNA samples by use of a commercial kit (RNeasy plus
Mini Kit, Qiagen, USA) following the manufacturer instructions immediately after mRNA iso-
lation from cultured macrophages. First-strand cDNA was synthesized by use of a commercial
kit (Script cDNA Synthesis Kit, Bio-Rad, USA) following the manufacturer instructions. Then,
cDNA was diluted to 100 μl total volume and SYBR green master mix was added (Power SYBR
Master Mix, Life Technologies, USA). Samples were analyzed in triplicate in a 96-well optical
reaction plate. Each sample contained 5 μl of cDNA diluted to 1:10 in DNAse free water and
15 μl of SYBR green master mix. Primers (Table 1) were designed using a web-based program;
http://biotools.umassmed.edu/bioapps/primer3_www.cgi). Gene expression was evaluated as
relative fold expression using the ΔΔCt method. GAPDH was used as an endogenous control
to normalize the gene expression input. Preliminary results showed no variation in the expres-
sion of GAPDH in macrophages treated with the chemical MAPKp38 inhibitor (SB203580,
Sigma-Aldrich, USA), or DMSO to untreated macrophages (data not shown).

Determination of nitric oxide production
After 24-hour incubation ofM. paratuberculosis-derived peptides (5 μg/mL) with primary bo-
vine macrophages, nitrite (i.e., the stable by-product of nitric oxide generated by phagocytes)
was measured in culture supernatants. Fifty microliters of supernatant was mixed with 200 μL
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of Griess reagent (1% sulfanilamide, 0.1% napthylethylenedamine dihydrochloride, and 2.5%
H3PO4) and incubated at 25°C for 10 minutes. Absorbance was determined at 540 nm, and ab-
sorbance readings were converted to micromolar concentrations by comparing results for sam-
ples with results for a standard curve generated by use of concentrations ranging from 1.5 to
200 μM of NaNO2.

Phagocytosis and intracellular survival of mycobacterial organisms
M. avium organisms were used instead ofM. paratuberculosis in the survival assay because
macrophages have been shown to more effectively killM. avium organisms therefore increas-
ing the assay sensitivity. Monocyte-derived macrophages attached to coverslips were stained
with Ziehl-Neelsen carbolfuchsin stain (Sigma, St Louis, MO) for presence of mycobacteria
and other acid-fast organisms. The percentage of macrophages containing organisms was de-
termined by counting a minimum of 200 cells by use of light microscopy. Killing of organisms
was assessed by use of a live-dead stain (BackLight kit, Invitrogen, Carlsbad, CA). This test has
previously been reported to provide a rapid and reliable method for differentiating live vs. dead
M. avium organisms [14]. Macrophages were preincubated with or withoutM. paratuberculo-
sis-derived recombinant proteins (5 μg/mL) for 2 hours and then infected withM. avium. After
72 hours, macrophages were washed twice in PBS solution and then lysed by incubation with
0.1% deoxycholate for 5 minutes. The lysate was incubated with a 1:1 mixture of a green fluo-
rescent stain and propidium iodine stain. Cells were placed on a microscope slide, cover-
slipped, and examined on a fluorescent microscope (40X objective) by using a dual-band filter
set that detects fluorescence in the green and red emission spectra. For this method, live organ-
isms had green fluorescence and dead organisms had red fluorescence. At least 200 organisms
were enumerated per treatment group.

Determination of MAPKp38 phosphorylation by enzyme-linked
immunosorbent assay (ELISA)
An ELISA kit (InstantOne, eBioscience, USA) was used to measure phosphorylated levels of
MAPKp38α in bovine macrophage lysates post treatment with either ovalbumin (OVA, Life
Technology, USA) at 5 ug/mL, liveM. paratuberculosis organisms at 10:1 MOI orM. paratu-
berculosis recombinant proteins at 5 ug/mL. Resting macrophages were used as the background
control. A modified protocol was used such that 300 μL cell lysates were added to completely
cover a single well in a standard 12-well plate. Equal parts cell lysate plus capture and detection
antibody reagents were added simultaneously to the InstantOne assay plate. After 1 hour of in-
cubation at 37°C, the wells were washed and detection solution (supplied by the kit) was ap-
plied for 20 minutes in the dark. Absorbance was measured at 450 nm in a standard ELISA
plate reader. Positive control cell lysate and negative control (cell lysis buffer), as well as un-
treated lysates, confirmed antibody efficacy. Experimental replicates were done in triplicate.

Table 1. Primers used for qRT-PCR.

Gene Primer Accession no.

TNF-α Forward 50– TCAAACACTCAGGTCCTCTTCTCA––30 Reverse 50 - GTCGGCTACAACGTGGGCTACC––30 AC000180

IL-10 Forward 50–CGGCTGCGGCGCTGTCATC–30 Reverse 50–TCACCTTCTCCACCGCCTTGCTCT–30 P43480

IL-12 (p40) Forward 5–TCGGCAGGTGGAGGTCA–3 Reverse 5–ACACAAAACGTCAGGGAGAAGTAG–3 P46282

GAPDH Forward 50–GAAACCTGCCAAGTATTGATGAGAT–30 Reverse 50–TGTAGCCTAGAATGCCCTTGAGAG–30 P10096

doi:10.1371/journal.pone.0128966.t001
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Statistical analysis
All tests were performed in triplicate and results of at least three separate experiments were
evaluated. Mann-Whitney statistical test was used to verify normal distribution of the data. Re-
sults were expressed as mean ± SD. Differences between cell cultures incubated withM. paratu-
berculosis recombinant proteins with or without addingM. avium were analyzed by use of the
paired student t-test. P< 0.05 was considered to be statistically significant.

Results

M. paratuberculosis recombinant proteins stimulate cytokine
transcription
Since it is known that the MAPKp38 pathway induces expression of IL-10, while at the same
time suppressing IL-12 expression, we tested transcription of these cytokines in macrophages
after exposure toM. paratuberculosis recombinant proteins. It is further known that lipid con-
taining molecules such as the 19-kDa antigen and trehalose 6, 6’-dimycolate activate the TLR2
pathway [24, 29], thus we reasoned thatM. paratuberculosis lipoproteins may also be involved
in TLR2 interactions. Therefore the genome sequence ofM. paratuberculosis [30] was searched
for genes annotated as lipoproteins. A total of 51 genes satisfied these criteria. Of these, 42
genes (82%) were successfully cloned and expressed in E. coli (Table 2). Macrophages were in-
cubated with or without these purified fusion proteins and analyzed for cytokine expression
including TNF-α, IL-12 and IL-10 transcription (Table 2). The results show 6 of 42 proteins
had greater than 2 fold increase of IL-10 transcription over background. These six include
MAP0261c, MAP0584, MAP2322c, MAP3615c, MAP0981c and MAP3837c (Fig 1A).
MAP2322c also stimulated transcription of both IL-12 and TNF-α above the level of the con-
trol, whereas MAP0981c stimulated transcription of only IL-12 (Fig 1B and 1C). These data
initially suggest MAP0261c, MAP0584 and MAP3837c are the primary candidates for stimu-
lating MAPKp38 phosphorylation.

MAP1761c increases survival ofMycobacterium avium in macrophages
Although it has been shown that someM. avium strains can survive within human and murine
macrophages [31], other studies have shown thatM. avium is more susceptible to killing within
cultured bovine macrophages than isM. paratuberculosis [10, 32]. Therefore, to evaluate the ef-
fect ofM. paratuberculosis proteins onM. avium survival within bovine macrophages, cells
were preincubated in the presence or absence of recombinant proteins for 2 hours and then in-
cubated withM. avium for 72 hours, which is the time needed to kill approximately half of the
M. avium inoculum [10]. When macrophages were exposed to MAP1761c,M. avium survival
was enhanced with 71±4% of the cells surviving after 72 hours (Fig 2A). MAP3837c seemed to
also have a preservation effect as 60±10% of the inoculum survived in macrophages exposed
to that protein. In contrast, only 32±5%M. avium cells survived after preincubation with
MAP0261c (Fig 2A).

MAP2322c increases production of nitric oxide
Nitric oxide (NO) is a reactive signaling molecule and an important inflammatory mediator,
which acts as a cytotoxic agent in addition to modulate immune responses and inflammation
through multiple immune networks. Our results showed that compared to macrophages incu-
bated withM. paratuberculosis and the control peptide LacZ, only MAP2322c shows signifi-
cant increase in production of NO (Fig 2B).
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Table 2. Mycobacterium avium subspecies paratuberculosis protein effect on NO2 and cytokines.

Conc. NO2 TNF-α IL-12 IL-10

Protein Description (A550) (ug/cc) fold change SD fold change SD fold change SD

MAP0261c 19-kDa lipoprotein, LpqH 0.048 2.7 1.527 0.498 1.318 0.492 2.255 0.7

MAP0584 Lipoprotein, LprH 0.067 3.8 2.11 0.749 1.132 0.366 3.044 2.045

MAP2009 Zn-dependent hydrolase 0.04 2.3 3.182 1.951 1.04 0.854 1.208 0.242

MAP3268 Small heat shock protein 0.036 2.0 0.885 0.223 0.56 0.175 0.187 0.068

MAP1138c Lipoprotein, LprG 0.051 2.9 1.826 0.465 2.231 0.651 1.806 0.478

MAP0474c Lipoprotein, LpqE 0.09 5.1 1.067 0.372 0.103 0.046 1.072 0.387

MAP2048 Lipoprotein, LppO 0.083 4.7 1.414 0.695 0.052 0.024 0.449 0.243

MAP2522 Lipofamily protein, LprE 0.065 3.7 1.155 0.578 1.032 0.256 0.361 0.064

MAP3883c beta-lactamase protein 0.049 2.8 3.08 1.711 2.097 0.957 0.325 0.069

MAP1194c 27-kDa lipoprotein 0.07 4.0 3.401 0.268 2.122 0.935 1.187 0.243

MAP3417c Lipoprotein, LpqC 0.048 2.7 2.655 1.573 1.117 0.549 1.039 0.314

MAP0466c Lipoprotein, LpqF 0.104 5.9 1.079 0.473 0.308 0.101 1.078 0.404

MAP2017 Lipoprotein, LppN 0.077 4.4 0.625 0.251 0.331 0.149 0.761 0.356

MAP2498c Lipoprotein, LprB 0.063 3.6 1.185 0.636 1.041 0.288 0.728 0.197

MAP3688 beta-glucosidase, LpqI 0.078 4.4 1.191 0.66 1.047 0.539 0.756 0.388

MAP0989 Hypothetical protein, LpqU 0.084 4.8 1.459 1.062 1.06 0.353 0.828 0.387

MAP1840 Lipoprotein, LppK 0.067 3.8 7.671 2.796 3.267 1.502 1.315 0.55

MAP0440c Hypothetical protein, LpqG 0.09 5.1 2.914 1.792 1.476 1.061 1.517 1.178

MAP1909 Lipoprotein, LppM 0.075 4.2 0.06 0.028 0.928 0.587 1.471 0.966

MAP2322c Hypothetical protein, LppS 0.096 5.4 5.688 3.152 8.496 3.37 2.625 0.939

MAP3615c Hypothetical protein, LprO 0.083 4.7 1.274 0.79 1.09 0.433 3.913 2.026

MAP0981c Lpp-LpqN family protein 0.086 4.9 1.698 0.823 5.149 2.193 3.047 1.225

MAP2216c Lipoprotein, LppR 0.047 2.7 1.016 0.181 1.012 0.154 1.38 0.95

MAP3056 pknH-like protein, LpqA 0.065 3.7 8.09 5.651 9.111 5.045 0.555 0.255

MAP1761c peptidase M75 protein 0.043 2.4 1.761 0.602 1.29 0.314 0.48 0.139

MAP1781 Lipoprotein, LppI 0.036 2.0 3.984 0.483 3.593 1.672 0.639 0.2

MAP0670 D-ala-D-ala dipeptidase, LpqR 0.036 2.0 0.781 0.508 0.663 0.399 0.982 0.188

MAP2103c LppP/LprE lipoprotein family 0.049 2.8 3.364 1.737 2.761 1.937 1.764 1.088

MAP3481 Histidine phosphatase, LpqD 0.037 2.1 1.049 0.317 1.058 0.346 1.175 0.616

MAP3041 Dehydrogenase, LppZ 0.057 3.2 1.47 0.364 1.436 0.496 0.539 0.373

MAP3908 Lipoprotein peptidase, LpqM 0.044 2.5 1.033 0.259 1.022 0.209 0.42 0.172

MAP1670c L, D-transpeptidase, LppS 0.062 3.5 3.9 2.122 3.251 1.855 0.628 0.344

MAP3837c Hypothetical protein, LpqJ 0.062 3.5 1.627 0.534 1.288 0.886 3.863 0.818

MAP1604c 19-kDa lipoantigen, LppE 0.053 3.0 2.893 1.02 3.826 1.35 1.723 0.736

MAP2497c Lipoprotein, LprC 0.065 3.7 1.864 0.821 2.165 0.806 1.158 0.585

MAP2548c Solute binding protein, LpqY 0.063 3.6 2.469 1.359 3.666 1.754 0.699 0.257

MAP3906 Amidohydrolase, LpqL 0.049 2.8 1.607 1.258 1.104 0.467 0.329 0.085

MAP2417c Hypothetical protein, LppJ 0.043 2.4 2.773 1.078 0.738 0.291 0.303 0.138

MAP2539c Substrate binding protein, LpqZ 0.043 2.4 1.592 1.239 1.163 0.594 0.338 0.177

MAP3907 Peptidase M28, LpqL 0.064 3.6 0.428 0.395 3.145 1.817 1.335 0.442

MAP1216c Lipoprotein, LpqQ 0.069 3.9 0.136 0.062 3.064 1.576 1.134 0.585

MAP1397 Hypothetical protein, LprJ 0.056 3.2 0.138 0.096 1.401 1.046 1.02 0.257

LacZ Non-mycobacterial control 0.08 4.5 1.542 0.415 0.579 0.27 1.076 0.398

doi:10.1371/journal.pone.0128966.t002
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Fig 1. Cytokine expression levels of bovinemacrophages in response to MAP recombinant proteins.
Shown are IL-10 (A), IL-12 (B) and TNF-α (C), mRNA transcription levels in response to 2-h incubation with
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The MAPKp38 pathway is activated byM. paratuberculosis proteins
The effects ofM. paratuberculosis recombinant proteins on phosphorylation of MAPKp38 in
bovine macrophages were investigated. Compared to macrophages alone or macrophages incu-
bated with OVA, recombinant proteins as well as liveM. paratuberculosis cells significantly en-
hanced phosphorylation of MAPKp38 (Fig 3). However, only MAP0981c stimulated
phosphorylation at a higher level thanM. paratuberculosis cells. These recombinant proteins
consistently and reproducibly activated MAPKp38. In contrast, MAPKp38 phosphorylation
was attenuated after incubation of macrophages with MAP1761c (data not shown) a protein
that failed to induce IL-10 expression (Table 2).

Discussion
Previous studies have suggested that Man-LAM purified fromM. paratuberculosismay interact
with mannose receptors on macrophages to promote IL-10 production and inhibit phagosome
acidification [22]. This glycolipid complex was not shown to activate the MAPKp38 pathway,
but it is known thatM. paratuberculosis itself activates this pathway [14]. In the present study,
we identified specificM. paratuberculosis proteins that consistently activate MAPKp38 in a
manner similar toM. paratuberculosis whole cells. Although Man-LAM demonstrated a much
higher fold increase (15-fold) in IL-10 expression [22] than did the proteins tested here,
MAP0584 and MAP3837c did show over 3-fold increase in IL-10 expression by macrophages.
MAP1761c did not induce expression of IL-10 (Table 2), but appears similar to MAP3837c in
that it appears to inhibit killing ofM. avium within macrophages, although MAP3837c was not
statistically significant Inhibition of killing by these proteins are independent of NO produc-
tion (Fig 2B). MAP1761c is a predicted periplasmic lipoprotein involved in iron transport and
contains the peptidase M75 motif on the C-terminal half. This motif was shown to contain pro-
teolytic activity in Pseudomonas aeruginosa although its active site residues have yet to be de-
fined [33]. MAP3837c is annotated as a hypothetical lipoprotein so it is unclear what specific
role it may play in the bacterial cell, particularly after engagement with the host macrophage,
but its participation in MAPKp38 signaling is apparent.

Our previous data suggest IL-10 is a mediator ofM. paratuberculosis survival in macro-
phages and may suggest the TLR2-MAPKp38 signaling pathways are involved in suppression
of bacterial killing [15]. We suspect that TLR2 is a key receptor that interacts withM. paratu-
berculosis in some way to prevent it from being killed. Thus, demonstrating whichM. paratu-
berculosis protein molecule interacts with TLR2 is a critical first step. Although Man-LAM
induces a lengthy IL-10 response [22], preliminary studies suggest it does not interact with
TLR2. Unfortunately, demonstration of the lipoproteins and their interaction with TLR2 are
more difficult to evaluate. Dose and time are critical for each protein and for this assay lipi-
dated proteins are essential. Future studies include testing MAPKp38 phosphorylation after ex-
posure to MAP1761c and MAP3837c. This will include Western blotting with and without the
addition of anti-TLR2 antibody for blocking. In addition, an alternative approach that can be
pursued to verify the interaction of the proteins studied here with TLR2 is to use the HEK-Blue
Detection Kit (Invivogen) that is designed to provide a sensitive and reliable method to screen
and validate TLR agonists

the recombinant proteins indicated on the x-axis. Significantly different macrophages treated with MAP
lipoproteins in comparison to macrophages alone (CTLR) are indicated with an asterisk (*). Error bars
represent results of at least three separate experiments.

doi:10.1371/journal.pone.0128966.g001
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Fig 2. MAP1761c promotes survival ofM. avium in bovinemacrophages.Macrophages were incubated with or without recombinant proteins (5 μg/ml)
for 2 h and then infected withM. avium for 72 h. (A) Preincubation of macrophages with MAP1761c resulted in 71±4% viability. The other lipoproteins shown

MAP Proteins Activates MAPKp38 and Induced IL-10 Expression

PLOS ONE | DOI:10.1371/journal.pone.0128966 June 15, 2015 10 / 14



It should be noted that because the recombinant proteins were expressed in E. coli, it is un-
likely they were post-translationally lipidated. While all bacteria have the machinery to lipidate
proteins, E. coli is generally viewed as not suitable for producing lipid-modified mycobacterial
proteins. Purification of this extensive set of proteins from theM. paratuberculosis host in
quantities that could be analyzed was not feasible. Other groups have been successful in pro-
ducing recombinant forms of theM. tuberculosis lipoproteins LppX and LprF using the surro-
gate hostM. smegmatis for structural studies [34, 35]. This is the strategy we will pursue with a
selection of the best candidates identified in the current study. Nonetheless, with this limitation
in mind, we can still make inferences regarding the protein component of the lipoprotein and
its immune stimulatory capabilities. However, we acknowledge it is likely the effects observed
using these recombinant proteins would either be enhanced or unexpectedly altered if using
the native lipidated protein.

Others have shown that IL-12 transcription is increased inM. paratuberculosis infected
macrophages within 6 hours and this expression remains high through 24 hours but then de-
creases to background levels by 72 hours post infection [10]. This suggests thatM. paratubercu-
losis-infected macrophages rapidly produce IL-12 to enhance the developing T cell response.
As shown in Table 2, a set of recombinant proteins consistently increased the transcription of
IL-12 and TNF-α but had little effect on IL-10 transcription. Moreover, these proteins failed to
activate MAPKp38. It would be reasonable to assume thatM. paratuberculosis contains a co-
hort of lipoproteins with pro-immune effects but that this is counterbalanced by the presence
of anti-inflammatory and immunomodulatory lipoproteins. The net effect is represented by
the capacity of this pathogen to circumvent the antimicrobial functions of macrophages.

were either at or below the percent viability forM. avium cells alone. (B) Only MAP2322c induced significant levels of nitrite production compared to
macrophages incubated with MAP and LacZ. Error bars represent results of at least three separate experiments.

doi:10.1371/journal.pone.0128966.g002

Fig 3. Phosphorylation of MAPK-p38 indicates activation of this pathway by MAP lipoproteins. Bovine macrophages exposed toM. paratuberculosis
cells as well as recombinant proteins showed significant phosphorylation of MAPK-p38 compared to resting macrophages or macrophages incubated with a
control peptide ovalbumin (OVA). Significantly different macrophages treated with purified proteins in comparison to macrophages alone (CTLR) are
indicated with an asterisk (*).Error bars represent results of at least three separate experiments.

doi:10.1371/journal.pone.0128966.g003
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Importantly, immunostimulatory lipoproteins with little effect on MAPKp38 activation could
be used to attempt the synthesis of unit-particle vaccines using nanotechnology approaches.

In conclusion, we showed that specificM. paratuberculosis recombinant proteins induce ex-
pression of IL-10 by macrophages whereas others are involved in preserving mycobacteria
within macrophages as well as activating the MAPKp38 pathway. These data suggest thatM.
paratuberculosis proteins described herein are potentially major virulence factors and thatM.
paratuberculosis somehow actively modulates the MAPKp38 signaling pathway.
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