15 research outputs found

    Respiratory and skin health among glass microfiber production workers: a cross-sectional study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Only a few studies have investigated non-malignant respiratory effects of glass microfibers and these have provided inconsistent results. Our objective was to assess the effects of exposure to glass microfibers on respiratory and skin symptoms, asthma and lung function.</p> <p>Methods</p> <p>A cross-sectional study of 102 workers from a microfiber factory (response rate 100%) and 76 office workers (73%) from four factories in Thailand was conducted. They answered a questionnaire on respiratory health, occupational exposures, and lifestyle factors, and performed spirometry. Measurements of respirable dust were available from 2004 and 2005.</p> <p>Results</p> <p>Workers exposed to glass microfibers experienced increased risk of cough (adjusted OR 2.04), wheezing (adjOR 2.20), breathlessness (adjOR 4.46), nasal (adjOR 2.13) and skin symptoms (adjOR 3.89) and ever asthma (adjOR 3.51), the risks of breathlessness (95%CI 1.68–11.86) and skin symptoms (1.70–8.90) remaining statistically significant after adjustment for confounders. There was an exposure-response relation between the risk of breathlessness and skin symptoms and increasing level of microfiber exposure. Workers exposed to sensitizing chemicals, including phenol-formaldehyde resin, experienced increased risk of cough (3.43, 1.20–9.87) and nasal symptoms (3.07, 1.05–9.00).</p> <p>Conclusion</p> <p>This study provides evidence that exposure to glass microfibers increases the risk of respiratory and skin symptoms, and has an exposure-response relation with breathlessness and skin symptoms. Exposure to sensitizing chemicals increased the risk of cough and nasal symptoms. The results suggest that occupational exposure to glass microfibers is related to non-malignant adverse health effects, and that implementing exposure control measures in these industries could protect the health of employees.</p

    Long-term air pollution exposure and self-reported morbidity: A longitudinal analysis from the Thai cohort study (TCS)

    Get PDF
    [Background] Several studies have shown the health effects of air pollutants, especially in China, North American and Western European countries. But longitudinal cohort studies focused on health effects of long-term air pollution exposure are still limited in Southeast Asian countries where sources of air pollution, weather conditions, and demographic characteristics are different. The present study examined the association between long-term exposure to air pollution and self-reported morbidities in participants of the Thai cohort study (TCS) in Bangkok metropolitan region (BMR), Thailand. [Methods] This longitudinal cohort study was conducted for 9 years from 2005 to 2013. Self-reported morbidities in this study included high blood pressure, high blood cholesterol, and diabetes. Air pollution data were obtained from the Thai government Pollution Control Department (PCD). Particles with diameters ≤10 μm (PM₁₀), sulfur dioxide (SO₂), nitrogen dioxide (NO₂), ozone (O₃), and carbon monoxide (CO) exposures were estimated with ordinary kriging method using 22 background and 7 traffic monitoring stations in BMR during 2005–2013. Long-term exposure periods to air pollution for each subject was averaged as the same period of person-time. Cox proportional hazards models were used to examine the association between long-term air pollution exposure with self-reported high blood pressure, high blood cholesterol, diabetes. Results of self-reported morbidity were presented as hazard ratios (HRs) per interquartile range (IQR) increase in PM₁₀, O₃, NO₂, SO₂, and CO. [Results] After controlling for potential confounders, we found that an IQR increase in PM₁₀ was significantly associated with self-reported high blood pressure (HR = 1.13, 95% CI: 1.04, 1.23) and high blood cholesterol (HR = 1.07, 95%CI: 1.02, 1.12), but not with diabetes (HR = 1.05, 95%CI: 0.91, 1.21). SO₂ was also positively associated with self-reported high blood pressure (HR = 1.22, 95%CI: 1.08, 1.38), high blood cholesterol (HR = 1.20, 95%CI: 1.11, 1.30), and diabetes (HR = 1.21, 95%CI: 0.92, 1.60). Moreover, we observed a positive association between CO and self-reported high blood pressure (HR = 1.07, 95%CI: 1.00, 1.15), but not for other diseases. However, self-reported morbidities were not associated with O₃ and NO₂. [Conclusions] Long-term exposure to air pollution, especially for PM₁₀ and SO₂ was associated with self-reported high blood pressure, high blood cholesterol, and diabetes in subjects of TCS. Our study supports that exposure to air pollution increases cardiovascular disease risk factors for younger population

    From the authors

    No full text

    Respiratory effects of occupational exposures in a milk powder factory

    No full text

    Self-assessed threshold temperature for cold among poultry industry workers in Thailand

    No full text
    Abstract The self-assessed threshold temperature for cold in the workplace is not well known. We asked 392 chicken industry workers in Thailand what they regard as the cold threshold (CT) and compared subgroups of workers using linear and quantile regressions by CT sextiles (percentiles P₁₇, P₃₃, P₅₀, P₆₇, and P₈₃, from warmest to coldest). The variables of interest were sex, office work, and sedentary work, with age, clothing thermal insulation, and alcohol consumption as adjustment factors. The mean CT was 14.6 °C. Office workers had a 6.8 °C higher mean CT than other workers, but the difference ranged from 3.8 °C to 10.0 °C from P₁₇ to P₈₃. Sedentary workers had a 2.0 °C higher mean CT than others, but the difference increased from 0.5 °C to 3.0 °C through P₁₇–P₈₃. The mean CT did not differ between sexes, but men had a 1.6–5.0 °C higher CT at P₁₇–P₅₀ (&gt;20 °C) and a 5.0 °C lower CT at P₈₃ (&lt;10 °C). The CT was relatively high at warm (≥10 °C), dry (relative humidity &lt;41%), and drafty (air velocity &gt; 0.35 m/s) worksites. We conclude that office, sedentary, and female workers and those working at warm, dry, and draughty sites are sensitive to the coldest temperatures, whereas male workers are sensitive even to moderate temperatures
    corecore