82 research outputs found

    Phase shift effective range expansion from supersymmetric quantum mechanics

    Full text link
    Supersymmetric or Darboux transformations are used to construct local phase equivalent deep and shallow potentials for ℓ≠0\ell \neq 0 partial waves. We associate the value of the orbital angular momentum with the asymptotic form of the potential at infinity which allows us to introduce adequate long-distance transformations. The approach is shown to be effective in getting the correct phase shift effective range expansion. Applications are considered for the 1P1^1P_1 and 1D2^1D_2 partial waves of the neutron-proton scattering.Comment: 6 pages, 3 figures, Revtex4, version to be publised in Physical Review

    Eigenphase preserving two-channel SUSY transformations

    Full text link
    We propose a new kind of supersymmetric (SUSY) transformation in the case of the two-channel scattering problem with equal thresholds, for partial waves of the same parity. This two-fold transformation is based on two imaginary factorization energies with opposite signs and with mutually conjugated factorization solutions. We call it an eigenphase preserving SUSY transformation as it relates two Hamiltonians, the scattering matrices of which have identical eigenphase shifts. In contrast to known phase-equivalent transformations, the mixing parameter is modified by the eigenphase preserving transformation.Comment: 16 pages, 1 figur

    Equivalence of the Siegert-pseudostate and Lagrange-mesh R-matrix methods

    Full text link
    Siegert pseudostates are purely outgoing states at some fixed point expanded over a finite basis. With discretized variables, they provide an accurate description of scattering in the s wave for short-range potentials with few basis states. The R-matrix method combined with a Lagrange basis, i.e. functions which vanish at all points of a mesh but one, leads to simple mesh-like equations which also allow an accurate description of scattering. These methods are shown to be exactly equivalent for any basis size, with or without discretization. The comparison of their assumptions shows how to accurately derive poles of the scattering matrix in the R-matrix formalism and suggests how to extend the Siegert-pseudostate method to higher partial waves. The different concepts are illustrated with the Bargmann potential and with the centrifugal potential. A simplification of the R-matrix treatment can usefully be extended to the Siegert-pseudostate method.Comment: 19 pages, 1 figur

    Coherent Backscattering of light in a magnetic field

    Full text link
    This paper describes how coherent backscattering is altered by an external magnetic field. In the theory presented, magneto-optical effects occur inside Mie scatterers embedded in a non-magnetic medium. Unlike previous theories based on point-like scatterers, the decrease of coherent backscattering is obtained in leading order of the magnetic field using rigorous Mie theory. This decrease is strongly enhanced in the proximity of resonances, which cause the path length of the wave inside a scatterer to be increased. Also presented is a novel analysis of the shape of the backscattering cone in a magnetic field.Comment: 27 pages, 5 figures, Revtex, to appear in Phys. Rev.

    Single- and coupled-channel radial inverse scattering with supersymmetric transformations

    Full text link
    The present status of the coupled-channel inverse-scattering method with supersymmetric transformations is reviewed. We first revisit in a pedagogical way the single-channel case, where the supersymmetric approach is shown to provide a complete solution to the inverse-scattering problem. A special emphasis is put on the differences between conservative and non-conservative transformations. In particular, we show that for the zero initial potential, a non-conservative transformation is always equivalent to a pair of conservative transformations. These single-channel results are illustrated on the inversion of the neutron-proton triplet eigenphase shifts for the S and D waves. We then summarize and extend our previous works on the coupled-channel case and stress remaining difficulties and open questions. We mostly concentrate on two-channel examples to illustrate general principles while keeping mathematics as simple as possible. In particular, we discuss the difference between the equal-threshold and different-threshold problems. For equal thresholds, conservative transformations can provide non-diagonal Jost and scattering matrices. Iterations of such transformations are shown to lead to practical algorithms for inversion. A convenient technique where the mixing parameter is fitted independently of the eigenphases is developed with iterations of pairs of conjugate transformations and applied to the neutron-proton triplet S-D scattering matrix, for which exactly-solvable matrix potential models are constructed. For different thresholds, conservative transformations do not seem to be able to provide a non-trivial coupling between channels. In contrast, a single non-conservative transformation can generate coupled-channel potentials starting from the zero potential and is a promising first step towards a full solution to the coupled-channel inverse problem with threshold differences.Comment: Topical review, 84 pages, 7 figures, 93 reference

    Do experts see it in slow motion? Altered timing of action simulation uncovers domain-specific perceptual processing in expert athletes

    Get PDF
    Accurate encoding of the spatio-temporal properties of others' actions is essential for the successful implementation of daily activities and, even more, for successful sportive performance, given its role in movement coordination and action anticipation. Here we investigated whether athletes are provided with special perceptual processing of spatio-temporal properties of familiar sportive actions. Basketball and volleyball players and novices were presented with short video-clips of free basketball throws that were partially occluded ahead of realization and were asked to judge whether a subsequently presented pose was either taken from the same throw depicted in the occluded video (action identification task) or temporally congruent with the expected course of the action during the occlusion period (explicit timing task). Results showed that basketball players outperformed the other groups in detecting action compatibility when the pose depicted earlier or synchronous, but not later phases of the movement as compared to the natural course of the action during occlusion. No difference was obtained for explicit estimations of timing compatibility. This leads us to argue that the timing of simulated actions in the experts might be slower than that of perceived actions ("slow-motion" bias), allowing for more detailed representation of ongoing actions and refined prediction abilities

    Nonlinear Supersymmetric Quantum Mechanics: concepts and realizations

    Full text link
    Nonlinear SUSY approach to preparation of quantum systems with pre-planned spectral properties is reviewed. Possible multidimensional extensions of Nonlinear SUSY are described. The full classification of ladder-reducible and irreducible chains of SUSY algebras in one-dimensional QM is given. Emergence of hidden symmetries and spectrum generating algebras is elucidated in the context of Nonlinear SUSY in one- and two-dimensional QM.Comment: 75 pages, Minor corrections, Version published in Journal of Physics

    Group membership and racial bias modulate the temporal estimation of in-group/out-group body movements

    Get PDF
    Social group categorization has been mainly studied in relation to ownership manipulations involving highly-salient multisensory cues. Here, we propose a novel paradigm that can implicitly activate the embodiment process in the presence of group affiliation information, whilst participants complete a task irrelevant to social categorization. Ethnically White participants watched videos of White- and Black-skinned models writing a proverb. The writing was interrupted 7, 4 or 1 s before completion. Participants were tasked with estimating the residual duration following interruption. A video showing only hand kinematic traces acted as a control condition. Residual duration estimates for out-group and control videos were significantly lower than those for in-group videos only for the longest duration. Moreover, stronger implicit racial bias was negatively correlated to estimates of residual duration for out-group videos. The underestimation bias for the out-group condition might be mediated by implicit embodiment, affective and attentional processes, and finalized to a rapid out-group categorization
    • …
    corecore