1,276 research outputs found

    Full distribution of work done on a quantum system for arbitrary initial states

    Full text link
    We propose a novel approach to define and measure the statistics of work, internal energy and dissipated heat in a driven quantum system. In our framework the presence of a physical detector arises naturally and work and its statistics can be investigated in the most general case. In particular, we show that the quantum coherence of the initial state can lead to measurable effects on the moments of the work done on the system. At the same time, we recover the known results if the initial state is a statistical mixture of energy eigenstates. Our method can also be applied to measure the dissipated heat in an open quantum system. By sequentially coupling the system to a detector, we can track the energy dissipated in the environment while accessing only the system degrees of freedom.Comment: 8 pages, 2 figures. Title change

    Geometric Landau-Zener interferometry in a superconducting charge pump

    Get PDF
    We propose a new type of interferometry, based on geometric phases accumulated by a periodically driven two-level system undergoing multiple Landau-Zener transitions. As a specific example, we study its implementation in a superconducting charge pump. We find that interference patterns appear as a function of the pumping frequency and the phase bias, and clearly manifest themselves in the pumped charge. We also show that the effects described should persist in the presence of realistic decoherence.Comment: 5 pages, 3 figure

    Radiation comb generation with extended Josephson junctions

    Full text link
    We propose the implementation of a Josephson radiation comb generator (JRCG) based on an extended Josephson junction subject to a time dependent magnetic field. The junction critical current shows known diffraction patterns and determines the position of the critical nodes when it vanishes. When the magnetic flux passes through one of such critical nodes, the superconducting phase must undergo a π\pi-jump to minimize the Josephson energy. Correspondingly a voltage pulse is generated at the extremes of the junction. Under periodic driving this allows us to produce a comb-like voltage pulses sequence. In the frequency domain it is possible to generate up to hundreds of harmonics of the fundamental driving frequency, thus mimicking the frequency comb used in optics and metrology. We discuss several implementations through a rectangular, cylindrical and annular junction geometries, allowing us to generate different radiation spectra and to produce an output power up to 1010~pW at 5050~GHz for a driving frequency of 100100~MHz.Comment: 4+ pages, 4 color figure

    Single Cooper-pair pumping in the adiabatic limit and beyond

    Get PDF
    We demonstrate controlled pumping of Cooper pairs down to the level of a single pair per cycle, using an rf-driven Cooper-pair sluice. We also investigate the breakdown of the adiabatic dynamics in two different ways. By transferring many Cooper pairs at a time, we observe a crossover between pure Cooper-pair and mixed Cooper-pair-quasiparticle transport. By tuning the Josephson coupling that governs Cooper-pair tunneling, we characterize Landau-Zener transitions in our device. Our data are quantitatively accounted for by a simple model including decoherence effects.Comment: 5 pages, 5 figure

    Adiabatically steered open quantum systems: Master equation and optimal phase

    Full text link
    We introduce an alternative way to derive the generalized form of the master equation recently presented by J. P. Pekola et al. [Phys. Rev. Lett. 105, 030401 (2010)] for an adiabatically steered two-level quantum system interacting with a Markovian environment. The original derivation employed the effective Hamiltonian in the adiabatic basis with the standard interaction picture approach but without the usual secular approximation. Our approach is based on utilizing a master equation for a non-steered system in the first super-adiabatic basis. It is potentially efficient in obtaining higher-order equations. Furthermore, we show how to select the phases of the adiabatic eigenstates to minimize the local adiabatic parameter and how this selection leads to states which are invariant under a local gauge change. We also discuss the effects of the adiabatic noncyclic geometric phase on the master equation.Comment: 8 pages, no figures, final versio

    Coherent caloritronics in Josephson-based nanocircuits

    Full text link
    We describe here the first experimental realization of a heat interferometer, thermal counterpart of the well-known superconducting quantum interference device (SQUID). These findings demonstrate, on the first place, the existence of phase-dependent heat transport in Josephson-based superconducting circuits and, on the second place, open the way to novel ways of mastering heat at the nanoscale. Combining the use of external magnetic fields for phase biasing and different Josephson junction architectures we show here that a number of heat interference patterns can be obtained. The experimental realization of these architectures, besides being relevant from a fundamental physics point of view, might find important technological application as building blocks of phase-coherent quantum thermal circuits. In particular, the performance of two different heat rectifying devices is analyzed.Comment: 34 pages, 15 figures, review article for Ultra-low temperatures and nanophysics ULTN2013. Microkelvin Proceeding

    Photonic heat conduction in Josephson-coupled Bardeen-Cooper-Schrieffer superconductors

    Full text link
    We investigate the photon-mediated heat flow between two Josephson-coupled Bardeen-Cooper-Schrieffer (BCS) superconductors. We demonstrate that in standard low temperature experiments involving temperature-biased superconducting quantum interference devices (SQUIDs), this radiative contribution is negligible if compared to the direct galvanic one, but it largely exceeds the heat exchanged between electrons and the lattice phonons. The corresponding thermal conductance is found to be several orders of magnitude smaller, for real experiments setup parameters, than the universal quantum of thermal conductance, kappa_0(T)=pi k_B^2T/6hbar.Comment: 8 pages, 6 figure

    Measurement-dependent corrections to work distributions arising from quantum coherences

    Get PDF
    For a quantum system undergoing a unitary process work is commonly defined based on the Two Projective Measurement (TPM) protocol which measures the energies of the system before and after the process. However, it is well known that projective measurements disregard quantum coherences of the system with respect to the energy basis, thus removing potential quantum signatures in the work distribution. Here we consider weak measurements of the system's energy difference and establish corrections to work averages arising from initial system coherences. We discuss two weak measurement protocols that couple the system to a detector, prepared and measured either in the momentum or the position eigenstates. Work averages are derived for when the system starts in the proper thermal state versus when the initial system state is a pure state with thermal diagonal elements and coherences characterised by a set of phases. We show that by controlling only the phase differences between the energy eigenstate contributions in the system's initial pure state, the average work done during the same unitary process can be controlled. By changing the phases alone one can toggle from regimes where the systems absorbs energy, i.e. a work cost, to the ones where it emits energy, i.e. work can be drawn. This suggests that the coherences are additional resources that can be used to manipulate or store energy in a quantum system.Comment: 9 pages, 3 figure

    Non-Abelian geometric phases in ground state Josephson devices

    Get PDF
    We present a superconducting circuit in which non-Abelian geometric transformations can be realized using an adiabatic parameter cycle. In contrast to previous proposals, we employ quantum evolution in the ground state. We propose an experiment in which the transition from non-Abelian to Abelian cycles can be observed by measuring the pumped charge as a function of the period of the cycle. Alternatively, the non-Abelian phase can be detected using a single-electron transistor working as a charge sensor.Comment: 5 pages, 3 figures; added references and clarified discussion about earlier research on the fiel

    Coherent diffraction of thermal currents in Josephson tunnel junctions

    Full text link
    We theoretically investigate heat transport in temperature-biased Josephson tunnel junctions in the presence of an in-plane magnetic field. In full analogy with the Josephson critical current, the phase-dependent component of the heat flux through the junction displays coherent diffraction. Thermal transport is analyzed in three prototypical junction geometries highlighting their main differences. Notably, minimization of the Josephson coupling energy requires the quantum phase difference across the junction to undergo \pi-slips in suitable intervals of magnetic flux. An experimental setup suited to detect thermal diffraction is proposed and analyzed.Comment: 6.5 pages, 4 color figures, updated versio
    • 

    corecore