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We propose a new type of interferometry, based on geometric phases accumulated by a periodically

driven two-level system undergoing multiple Landau-Zener transitions. As a specific example, we study

its implementation in a superconducting charge pump. We find that interference patterns appear as a

function of the pumping frequency and the phase bias, and clearly manifest themselves in the pumped

charge. We also show that the effects described should persist in the presence of realistic decoherence.
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A driven quantum two-level system traversing an
avoided energy-level crossing can undergo nonadiabatic
transitions, known as the Landau-Zener effect. If more than
one crossing is involved and the dynamics is overall co-
herent, then transition paths can interfere according to the
different phase accumulated by the ground and excited-
state wave functions between subsequent crossings. This
phenomenon, sometimes referred to as Landau-Zener-
Stückelberg (LZS) interferometry [1], was first observed
in atomic and optical systems, and recently proposed [2]
and measured also in superconducting qubit systems [3–7].
In all these realizations, the system is driven in such a way
that the interference effects have a purely dynamical na-
ture. In general, though, a quantum state subject to steered
evolution acquires both a dynamic and a geometric phase.
While the study of geometric phases in solid-state systems
is an active field of research [8–10], their relevance to LZS
interferometry has so far been unexplored [11].

In this Letter, we elucidate the link between LZS inter-
ference and geometric phases, opening new possibilities
for the geometric control of quantum systems. Our results
apply to a broad range of devices, namely, those for which
the parametric driving possesses a nontrivial geometric
structure and the induced energy-gap modulation presents
multiple avoided crossings. As a pertinent example, we
consider a superconducting charge pump, the Cooper-pair
sluice [12]. The connection between Cooper-pair pumping
and geometric phases was highlighted in previous theoreti-
cal works for both the Abelian [13,14] and non-Abelian
[15] case, yet always in the adiabatic limit, where the
system stays in the instantaneous ground state and excita-
tions are treated as small corrections [16]. We instead
consider higher frequency regimes and predict the appear-
ance of interference patterns depending on the pumping
frequency and the superconducting phase bias, the latter
embodying the geometric contribution to interference. We
then show that LZS resonances directly manifest them-
selves in the pumped charge, which is an advantage of
using a charge pump rather than a conventional qubit as an
interferometer. Finally, we introduce decoherence in our

model and show that interference effects are still detect-
able. This should make our proposal feasible for experi-
mental observation.
The Cooper-pair sluice, schematically shown in

Fig. 1(a), consists of a superconducting island coupled to
the leads by two superconducting quantum interference
devices (SQUIDs), whose Josephson energies JL;R, can
be tuned by changing the magnetic fluxes �L;R. A gate

electrode capacitively coupled to the island is used to
induce a polarization charge ng on the latter, thereby

providing a third control parameter. During a pumping
cycle, the parameters are steered so as to couple the island
to the left lead, attract a Cooper-pair, switch the coupling to
the right lead, and release the Cooper-pair [17]. We will
assume that the superconducting phase difference� across
the device is kept constant. This can be achieved by
shunting the sluice with a large Josephson junction. In

FIG. 1 (color online). (a) Schematic drawing of the ‘‘sluice.’’
(b) Effective magnetic field corresponding to the pumping cycle
considered in this Letter. (c) Adiabatic (instantaneous) energies
versus time. Avoided level crossings occur at times t1 ¼ T=4 and
t2 ¼ 3T=4. Green and red arrows outline two possibly interfer-
ing paths.
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this case, the switching statistics of the additional junction
also provides a way to measure the pumped charge [19].

The device is operated in the Coulomb-blockade regime
EC � Jmax, where Jmax ¼ maxfJL; JRg and EC is the
charging energy of the island. The system dynamics is
then best described in the basis of eigenstates of charge
on the island. Also, as long as ng stays close to the

degeneracy point 1=2, only two such states are relevant,
namely, those with zero and one excess Cooper pair on the
island. This allows us to use a pseudospin formalism and

write the sluice Hamiltonian as H ¼ ~� � ~B, where f�ig are
the Pauli matrices and the effective magnetic field ~B has
components

BxðtÞ ¼ JþðtÞ cos�2 ; (1)

ByðtÞ ¼ J�ðtÞ sin�2 ; (2)

BzðtÞ ¼ EC½1=2� ngðtÞ�; (3)

where we put J�ðtÞ ¼ JLðtÞ � JRðtÞ. As ~B is steered along
the path shown in Fig. 1(b), it spans a solid angle which is
responsible for the geometric effects under discussion.
This situation is clearly different from that considered in,

e.g., Refs. [3,4], where ~B moves on a definite plane (say,
x-z), leaving no room for nontrivial geometric effects to
take place.

In Fig. 1(c) we plot the energies of the adiabatic states
jgi, jei as a function of time for a pumping cycle, obtained
by instantaneous diagonalization of the Hamiltonian. The
avoided level crossings at t ¼ T=4, 3T=4 (T is the pumping
period) correspond to the gate charge crossing the degen-
eracy point. The probability of a nonadiabatic (Landau-
Zener) transition at such a crossing is given by
PLZ ¼ e�2��, where the adiabatic parameter � depends
on the velocity at which the crossing is traversed and on
the energy gap at the crossing [1]. For our case, � ¼
�J2max=ð48EC �ngh�Þ, where �ng ¼ maxfngg � 1=2 and

� ¼ 1=T.
In the limits EC � Jmax and h� & EC �ng, nonadiabatic

transitions are strongly localized at level crossings. The
system dynamics can thus be seen as a sequence of adia-
batic evolutions and localized transitions. For this reason,
the calculation is most conveniently performed in the
adiabatic basis fjgi; jeig. In the so-called adiabatic-impulse
model [1,20], Landau-Zener tunneling at anticrossings is
treated as instantaneous and described in the adiabatic
basis by a transfer matrix of the form

NLZ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� PLZ

p
ei ~’S � ffiffiffiffiffiffiffiffi

PLZ

p
ffiffiffiffiffiffiffiffi

PLZ

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� PLZ

p
e�i ~’S

� �

; (4)

where ~’S ¼ �ðlog�� 1Þ þ arg�ð1� i�Þ � �=4 is the
impulsive phase acquired by the adiabatic states in travers-
ing the crossing (� is the gamma function) [4,21].

For each adiabatic segment j ¼ 1, 2, 3 in Fig. 1(c),
evolution from time tj�1 to tj is described by a diagonal

matrix of the form Uj ¼ exp½i’j�z�, where ’j is the total

phase difference acquired by the adiabatic states. The latter
can be written as ’j ¼ �j þ �j, where we have distin-

guished a dynamic (�j) and a geometric (�j) contribution.

The dynamic phase difference �j is given by

�j ¼ 1

2@

Z tj

tj�1

dt
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

jH11 �H22j2 þ 4jH12j2
q

: (5)

By contrast, the geometric phase difference �j is given

by [22]

�j ¼ i

2

Z tj

tj�1

dt

�

hgj d
dt

jgi � hej d
dt

jei
�

: (6)

This phase is uniquely determined by the path drawn by the
system in parameter space, and reduces to the Berry phase
for cyclic ground-state evolution [23].
Putting things together, the evolution operator over a

period can be calculated as

U ¼ U3NLZU2NLZU1 ¼ U3

� �	�

	 ��

 !

U1; (7)

where

� ¼ ½ð1� PLZÞe2i~’Sþi�2þi�2 � PLZe
�i�2�i�2�; (8)

	 ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

PLZð1� PLZÞ
q

cosð~’S þ �2 þ �2Þ: (9)

U1 and U3 play no role in the upcoming resonance condi-
tion and will not be considered further. From (7), we can
calculate the excitation probability after one period starting
from the ground state. This is given by

P ¼ 4PLZð1� PLZÞcos2ð~’S þ �2 þ �2Þ: (10)

This probability oscillates between 0 and 4PLZð1� PLZÞ
as a function of the accumulated phase. In the fast-passage
limit, � � 1, we can approximate ~’S � ��=4 (in the
adiabatic limit � ! 1 and ~’S ! ��=2).
We now make our discussion specific by considering the

pumping cycle of Fig. 1(b) [24]. Up to the first order in
½Jmax=ðEC �ngÞ�2, we find

�2 ¼ 5�

6

EC �ng
h�

; (11)

�2 ¼ �=2: (12)

As expected, the dynamic phase �2 is inversely propor-
tional to the pumping frequency �. By contrast, the geo-
metric contribution �2 does not depend on �, and in this
particular case equals half the superconducting phase bias
�. We have thus derived a resonance condition involving
the superconducting phase bias � and the pumping fre-
quency �. In particular, in the region where ~’S attains a
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constant value, the resonances drift in the �-� plane as
branches of hyperbolae.

This analysis predicts the position of resonances and
explains their origin. Its regime of validity lies in between
the strictly adiabatic and the fully nonadiabatic one. As a
matter of fact, a lower bound for the pumping frequency is
set by the requirement for time evolution to be coherent
over one pumping cycle. On the other hand, at frequencies
comparable to the adiabatic level spacing (h� � EC �ng)

transitions are no longer restricted to the degeneracy points
and the adiabatic-impulse model is expected to break
down.

The superconducting phase bias � enters the resonance
condition through the geometric phase accumulated be-
tween subsequent transitions. This relationship is trivial
for the case considered, as the geometric phase is simply
proportional to �. Yet, this example clearly illustrates the
role of geometric phases in Landau-Zener interference. In
particular, by choosing the pumping frequency so that
~’S þ �2 is an integer multiple of �, the dynamic contri-
bution in (10) is washed out, resulting in a purely geomet-
ric Landau-Zener interference effect.

We now proceed to show that the predicted resonances
manifest themselves in the charge pumped by the device,
thus providing the most straightforward way of observing
them. To do so, we first obtain the full system dynamics
from numerical solution of the Schrödinger equation. We
then calculate the pumped charge by integrating the in-
stantaneous current operator [25]. In Fig. 2(a), we plot the
pumped charge over a period versus the phase bias � and
the pumping frequency �. The parameters are chosen so as
to be consistent with our model. In particular, microscopic
excitations in the superconducting circuit can be neglected
provided hfeff � �, where feff is the effective frequency
of the driving fields and � the superconducting gap.
Furthermore, for small values of �ng the system is suffi-

ciently anharmonic for the two-level approximation to hold
in the given frequency range. The lines drawn on top of the
image plot correspond to 90% probability of the system
being in the ground state at the end of the cycle. Dashed
lines are calculated numerically, dotted lines according to
(10). The strong correlation between the ground-state
population and the pumped charge demonstrates the pos-
sibility to access interference patterns simply by measuring
the latter. Moreover, the accuracy of the approximations
made in deriving (10) is confirmed by the good agreement
between analytical and numerical calculations.

In Fig. 2(b), we show the time evolution of ground-state
populations for one case of constructive and one of destruc-
tive interference. In both cases there is a population transfer
to the excited state after the first crossing. Yet, while con-
structive interference (solid line) enhances the excitation
after the second crossing, destructive interference (dashed
line) brings the system back to the ground state. In particu-
lar, this implies that for a given pumping frequency, the

phase bias can be chosen so as to pump a significant fraction
of Cooper pairs (about 0.5 in this case) even in the non-
adiabatic regime.
A complementary and instructive way to understand

these features is provided by Floquet analysis [26]. In
fact, we can explicitly calculate the quasienergy spectrum
by diagonalizing the evolution operator U in (7). We find
that destructive resonances occur at exact quasienergy
crossings, where time evolution over a period is trivial
and tunneling between adiabatic states is dynamically
frozen. This phenomenon is known as coherent destruction
of tunneling [27]. At the opposite end, constructive inter-
ference enhances such transitions, resulting in Floquet
states being the maximal mix of the adiabatic ones. This
is revealed in the quasienergies as the opening of a gap,
similarly to a time-independent system with a coupling
interaction switched on.
The LZS interferometry discussed above is a unitary

and coherent process. However, in any experimental im-
plementation the undesired and unavoidable coupling to
external degrees of freedom leads to decoherence and thus
it affects the observed pumped charge. This fact precludes

FIG. 2 (color online). (a) Pumped charge (in units of e) after
one cycle versus phase bias and frequency. The parameters are:
EC=kB ¼ 2:5 K, Jmax ¼ 0:1EC, 0:3 	 ng 	 0:7. Dashed lines

enclose the regions where the ground-state population at the
end of the cycle is at least 0.9. Dotted lines have the same
meaning but they are calculated according to (10) and in the fast-
passage approximation ~’S � ��=4. (b) Ground-state popula-
tion versus time for a case of destructive (dashed line) and
constructive (solid line) interference. The pumping frequency
is 1.56 GHz for both cases, the phase biases are 0.22 and 3.36,
respectively.
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a measurement of coherent LZS pumping over a great
number of cycles and must be taken into account in any
experimental proposal. To this end, wewill now discuss the
case in which the system is affected by charge noise. The
dissipative dynamics of the system is numerically obtained
from the master equation including the driving field and the
environment. The latter is described by a bath of harmonic
oscillators with Ohmic spectrum at zero temperature
[18,28]. To be able to detect the effect of coherence loss,
the pumping period must be smaller than the expected
decoherence time. By choosing a superconducting island
with high charging energy EC=kB ¼ 5 K, this condition is
fulfilled at frequencies as low as 0.5 GHz, which is still in
the regime of validity of the master equation [28,29].

In Fig. 3(a) we present the expected pumped charge in
the absence of noise over 50 consecutive pumping cycles
for constructive (squares) and destructive (circles) interfer-
ence. The results are readily interpreted after Fig. 2(b):
When interference is destructive, the system starts every
cycle in the ground state, so that the pumped charge is
constant. On the contrary, constructive interference allows
the system to be in different superpositions of the ground
and the excited state, and this is reflected in an oscillating
pumped charge from cycle to cycle.

When we include the environmental effects as in
Fig. 3(b), the behavior of the pumped charge in the
constructive case changes dramatically, as oscillations are
quickly damped due to the loss of coherence. At the same

time, the pumped charge in the destructive case is only
slightly affected by the environment. This is a direct result
of the fact that the system stays mainly in the ground state,
which was shown to be robust against decoherence [18,28].
This suggests that the detrimental effects of decoherence
can partly be overcome by a suitable choice of the phase
bias. Most importantly, we notice that the large difference
in the pumped charge makes it possible to clearly distin-
guish between the two cases.
In conclusion, we have proposed new type of Landau-

Zener interferometry, based on geometric phases.
Specifically, we have demonstrated this technique in a
superconducting charge pump. For that case, we have
shown that the geometric effects are controlled by the
superconducting phase bias across the pump. They can
be detected by measuring the pumped charge, and should
persist in the presence of realistic decoherence.
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