1,658 research outputs found

    Founder effects facilitate the use of a genotyping-based approach to molecular diagnosis in Swedish patients with familial hypercholesterolaemia

    Get PDF
    Aim To investigate whether genotyping could be used as a cost-effective screening step, preceding next-generation sequencing (NGS), in molecular diagnosis of familial hypercholesterolaemia (FH) in Swedish patients. Methods and results Three hundred patients of Swedish origin with clinical suspicion of heterozygous FH were analysed using a specific array genotyping panel embedding 112 FH-causing mutations in the LDLR, APOB and PCSK9 genes. The mutations had been selected from previous reports on FH patients in Scandinavia and Finland. Mutation-negative cases were further analysed by NGS. In 181 patients with probable or definite FH using the Dutch lipid clinics network (DLCN) criteria (score >= 6), a causative mutation was identified in 116 (64%). Of these, 94 (81%) were detected by genotyping. Ten mutations accounted for more than 50% of the positive cases, with APOB c.10580G>A being the most common. Mutations in LDLR predominated, with (c.2311+1_2312-1)(2514)del (FH Helsinki) and c.259T>G having the highest frequency. Two novel LDLR mutations were identified. In patients with DLCN score A was higher than previously reported in Sweden. The lack of demonstrable mutations in the LDLR, APOB and PCSK9 genes in similar to 1/3 of patients with probable FH strongly suggests that additional genetic mechanisms are to be found in phenotypic FH.Peer reviewe

    Multiple feedback loops through cytokinin signaling control stem cell number within the Arabidopsis shoot meristem

    Get PDF
    A central unanswered question in stem cell biology, both in plants and in animals, is how the spatial organization of stem cell niches are maintained as cells move through them. We address this question for the shoot apical meristem (SAM) which harbors pluripotent stem cells responsible for growth of above-ground tissues in flowering plants. We find that localized perception of the plant hormone cytokinin establishes a spatial domain in which cell fate is respecified through induction of the master regulator WUSCHEL as cells are displaced during growth. Cytokinin-induced WUSCHEL expression occurs through both CLAVATA-dependent and CLAVATA-independent pathways. Computational analysis shows that feedback between cytokinin response and genetic regulators predicts their relative patterning, which we confirm experimentally. Our results also may explain how increasing cytokinin concentration leads to the first steps in reestablishing the shoot stem cell niche in vitro

    Plasma and cerebrospinal fluid concentrations of neurofilament light protein correlate in patients with idiopathic normal pressure hydrocephalus

    Get PDF
    BACKGROUND: Neurofilament light chain protein (NFL), a marker of neuronal axonal degeneration, is increased in cerebrospinal fluid (CSF) of patients with idiopathic normal pressure hydrocephalus (iNPH). Assays for analysis of NFL in plasma are now widely available but plasma NFL has not been reported in iNPH patients. Our aim was to examine plasma NFL in iNPH patients and to evaluate the correlation between plasma and CSF levels, and whether NFL levels are associated with clinical symptoms and outcome after shunt surgery. METHODS: Fifty iNPH patients with median age 73 who had their symptoms assessed with the iNPH scale and plasma and CSF NFL sampled pre- and median 9 months post-operatively. CSF plasma was compared with 50 healthy controls (HC) matched for age and gender. Concentrations of NFL were determined in plasma using an in-house Simoa method and in CSF using a commercially available ELISA method. RESULTS: Plasma NFL was elevated in patients with iNPH compared to HC (iNPH: 45 (30-64) pg/mL; HC: 33 (26-50) (median; Q1-Q3), p = 0.029). Plasma and CSF NFL concentrations correlated in iNPH patients both pre- and postoperatively (r = 0.67 and 0.72, p < 0.001). We found only weak correlations between plasma or CSF NFL and clinical symptoms and no associations with outcome. A postoperative NFL increase was seen in CSF but not in plasma. CONCLUSIONS: Plasma NFL is increased in iNPH patients and concentrations correlate with CSF NFL implying that plasma NFL can be used to assess evidence of axonal degeneration in iNPH. This finding opens a window for plasma samples to be used in future studies of other biomarkers in iNPH. NFL is probably not a very useful marker of symptomatology or for prediction of outcome in iNPH

    Nonlinear response of dense colloidal suspensions under oscillatory shear: Mode-coupling theory and FT-rheology experiments

    Full text link
    Using a combination of theory, experiment and simulation we investigate the nonlinear response of dense colloidal suspensions to large amplitude oscillatory shear flow. The time-dependent stress response is calculated using a recently developed schematic mode-coupling-type theory describing colloidal suspensions under externally applied flow. For finite strain amplitudes the theory generates a nonlinear response, characterized by significant higher harmonic contributions. An important feature of the theory is the prediction of an ideal glass transition at sufficiently strong coupling, which is accompanied by the discontinuous appearance of a dynamic yield stress. For the oscillatory shear flow under consideration we find that the yield stress plays an important role in determining the non linearity of the time-dependent stress response. Our theoretical findings are strongly supported by both large amplitude oscillatory (LAOS) experiments (with FT-rheology analysis) on suspensions of thermosensitive core-shell particles dispersed in water and Brownian dynamics simulations performed on a two-dimensional binary hard-disc mixture. In particular, theory predicts nontrivial values of the exponents governing the final decay of the storage and loss moduli as a function of strain amplitude which are in excellent agreement with both simulation and experiment. A consistent set of parameters in the presented schematic model achieves to jointly describe linear moduli, nonlinear flow curves and large amplitude oscillatory spectroscopy

    Association of CSF proteins with tau and amyloid β levels in asymptomatic 70-year-olds

    Get PDF
    BACKGROUND: Increased knowledge of the evolution of molecular changes in neurodegenerative disorders such as Alzheimer's disease (AD) is important for the understanding of disease pathophysiology and also crucial to be able to identify and validate disease biomarkers. While several biological changes that occur early in the disease development have already been recognized, the need for further characterization of the pathophysiological mechanisms behind AD still remains. METHODS: In this study, we investigated cerebrospinal fluid (CSF) levels of 104 proteins in 307 asymptomatic 70-year-olds from the H70 Gothenburg Birth Cohort Studies using a multiplexed antibody- and bead-based technology. RESULTS: The protein levels were first correlated with the core AD CSF biomarker concentrations of total tau, phospho-tau and amyloid beta (Aβ42) in all individuals. Sixty-three proteins showed significant correlations to either total tau, phospho-tau or Aβ42. Thereafter, individuals were divided based on CSF Aβ42/Aβ40 ratio and Clinical Dementia Rating (CDR) score to determine if early changes in pathology and cognition had an effect on the correlations. We compared the associations of the analysed proteins with CSF markers between groups and found 33 proteins displaying significantly different associations for amyloid-positive individuals and amyloid-negative individuals, as defined by the CSF Aβ42/Aβ40 ratio. No differences in the associations could be seen for individuals divided by CDR score. CONCLUSIONS: We identified a series of transmembrane proteins, proteins associated with or anchored to the plasma membrane, and proteins involved in or connected to synaptic vesicle transport to be associated with CSF biomarkers of amyloid and tau pathology in AD. Further studies are needed to explore these proteins' role in AD pathophysiology

    Comparison of variables associated with cerebrospinal fluid neurofilament, total-tau, and neurogranin

    Get PDF
    INTRODUCTION: Three cerebrospinal fluid (CSF) markers of neurodegeneration (N) (neurofilament light [NfL], total-tau [T-tau], and neurogranin [Ng]) have been proposed under the AT(N) scheme of the National Institute on Aging-Alzheimer's Association Research Framework. METHODS: We examined, in a community-based population (N = 777, aged 50-95) (1) what variables were associated with each of the CSF (N) markers, and (2) whether the variables associated with each marker differed by increased brain amyloid. CSF T-tau was measured with an automated electrochemiluminescence Elecsys immunoassay; NfL and Ng were measured with in-house enzyme-linked immunosorbent assays. RESULTS: Multiple variables were differentially associated with CSF NfL and T-tau levels, but not Ng. Most associations were attenuated after adjustment for age and sex. T-tau had the strongest association with cognition in the presence of amyloidosis, followed by Ng. Variables associations with NfL did not differ by amyloid status. DISCUSSION: Understanding factors that influence CSF (N) markers will assist in the interpretation and utility of these markers in clinical practice

    Liquid-infiltrated photonic crystals - enhanced light-matter interactions for lab-on-a-chip applications

    Full text link
    Optical techniques are finding widespread use in analytical chemistry for chemical and bio-chemical analysis. During the past decade, there has been an increasing emphasis on miniaturization of chemical analysis systems and naturally this has stimulated a large effort in integrating microfluidics and optics in lab-on-a-chip microsystems. This development is partly defining the emerging field of optofluidics. Scaling analysis and experiments have demonstrated the advantage of micro-scale devices over their macroscopic counterparts for a number of chemical applications. However, from an optical point of view, miniaturized devices suffer dramatically from the reduced optical path compared to macroscale experiments, e.g. in a cuvette. Obviously, the reduced optical path complicates the application of optical techniques in lab-on-a-chip systems. In this paper we theoretically discuss how a strongly dispersive photonic crystal environment may be used to enhance the light-matter interactions, thus potentially compensating for the reduced optical path in lab-on-a-chip systems. Combining electromagnetic perturbation theory with full-wave electromagnetic simulations we address the prospects for achieving slow-light enhancement of Beer-Lambert-Bouguer absorption, photonic band-gap based refractometry, and high-Q cavity sensing.Comment: Invited paper accepted for the "Optofluidics" special issue to appear in Microfluidics and Nanofluidics (ed. Prof. David Erickson). 11 pages including 8 figure
    • …
    corecore