64 research outputs found

    Differing Requirements for RAD51 and DMC1 in Meiotic Pairing of Centromeres and Chromosome Arms in Arabidopsis thaliana

    Get PDF
    During meiosis homologous chromosomes pair, recombine, and synapse, thus ensuring accurate chromosome segregation and the halving of ploidy necessary for gametogenesis. The processes permitting a chromosome to pair only with its homologue are not fully understood, but successful pairing of homologous chromosomes is tightly linked to recombination. In Arabidopsis thaliana, meiotic prophase of rad51, xrcc3, and rad51C mutants appears normal up to the zygotene/pachytene stage, after which the genome fragments, leading to sterility. To better understand the relationship between recombination and chromosome pairing, we have analysed meiotic chromosome pairing in these and in dmc1 mutant lines. Our data show a differing requirement for these proteins in pairing of centromeric regions and chromosome arms. No homologous pairing of mid-arm or distal regions was observed in rad51, xrcc3, and rad51C mutants. However, homologous centromeres do pair in these mutants and we show that this does depend upon recombination, principally on DMC1. This centromere pairing extends well beyond the heterochromatic centromere region and, surprisingly, does not require XRCC3 and RAD51C. In addition to clarifying and bringing the roles of centromeres in meiotic synapsis to the fore, this analysis thus separates the roles in meiotic synapsis of DMC1 and RAD51 and the meiotic RAD51 paralogs, XRCC3 and RAD51C, with respect to different chromosome domains

    The Recombinases Rad51 and Dmc1 Play Distinct Roles in DNA Break Repair and Recombination Partner Choice in the Meiosis of Tetrahymena

    Get PDF
    Repair of programmed DNA double-strand breaks (DSBs) by meiotic recombination relies on the generation of flanking 3′ single-stranded DNA overhangs and their interaction with a homologous double-stranded DNA template. In various common model organisms, the ubiquitous strand exchange protein Rad51 and its meiosis-specific homologue Dmc1 have been implicated in the joint promotion of DNA–strand exchange at meiotic recombination sites. However, the division of labor between these two recombinases is still a puzzle. Using RNAi and gene-disruption experiments, we have studied their roles in meiotic recombination and chromosome pairing in the ciliated protist Tetrahymena as an evolutionarily distant meiotic model. Cytological and electrophoresis-based assays for DSBs revealed that, without Rad51p, DSBs were not repaired. However, in the absence of Dmc1p, efficient Rad51p-dependent repair took place, but crossing over was suppressed. Immunostaining and protein tagging demonstrated that only Dmc1p formed strong DSB–dependent foci on meiotic chromatin, whereas the distribution of Rad51p was diffuse within nuclei. This suggests that meiotic nucleoprotein filaments consist primarily of Dmc1p. Moreover, a proximity ligation assay confirmed that little if any Rad51p forms mixed nucleoprotein filaments with Dmc1p. Dmc1p focus formation was independent of the presence of Rad51p. The absence of Dmc1p did not result in compensatory assembly of Rad51p repair foci, and even artificial DNA damage by UV failed to induce Rad51p foci in meiotic nuclei, while it did so in somatic nuclei within one and the same cell. The observed interhomologue repair deficit in dmc1Δ meiosis is consistent with a requirement for Dmc1p in promoting the homologue as the preferred recombination partner. We propose that relatively short and/or transient Rad51p nucleoprotein filaments are sufficient for intrachromosomal recombination, whereas long nucleoprotein filaments consisting primarily of Dmc1p are required for interhomolog recombination

    The Arabidopsis BLAP75/Rmi1 Homologue Plays Crucial Roles in Meiotic Double-Strand Break Repair

    Get PDF
    In human cells and in Saccharomyces cerevisiae, BLAP75/Rmi1 acts together with BLM/Sgs1 and TopoIIIα/Top3 to maintain genome stability by limiting crossover (CO) formation in favour of NCO events, probably through the dissolution of double Holliday junction intermediates (dHJ). So far, very limited data is available on the involvement of these complexes in meiotic DNA repair. In this paper, we present the first meiotic study of a member of the BLAP75 family through characterisation of the Arabidopsis thaliana homologue. In A. thaliana blap75 mutants, meiotic recombination is initiated, and recombination progresses until the formation of bivalent-like structures, even in the absence of ZMM proteins. However, chromosome fragmentation can be detected as soon as metaphase I and is drastic at anaphase I, while no second meiotic division is observed. Using genetic and imunolocalisation studies, we showed that these defects reflect a role of A. thaliana BLAP75 in meiotic double-strand break (DSB) repair—that it acts after the invasion step mediated by RAD51 and associated proteins and that it is necessary to repair meiotic DSBs onto sister chromatids as well as onto the homologous chromosome. In conclusion, our results show for the first time that BLAP75/Rmi1 is a key protein of the meiotic homologous recombination machinery. In A. thaliana, we found that this protein is dispensable for homologous chromosome recognition and synapsis but necessary for the repair of meiotic DSBs. Furthermore, in the absence of BLAP75, bivalent formation can happen even in the absence of ZMM proteins, showing that in blap75 mutants, recombination intermediates exist that are stable enough to form bivalent structures, even when ZMM are absent

    A High Throughput Genetic Screen Identifies New Early Meiotic Recombination Functions in Arabidopsis thaliana

    Get PDF
    Meiotic recombination is initiated by the formation of numerous DNA double-strand breaks (DSBs) catalysed by the widely conserved Spo11 protein. In Saccharomyces cerevisiae, Spo11 requires nine other proteins for meiotic DSB formation; however, unlike Spo11, few of these are conserved across kingdoms. In order to investigate this recombination step in higher eukaryotes, we took advantage of a high-throughput meiotic mutant screen carried out in the model plant Arabidopsis thaliana. A collection of 55,000 mutant lines was screened, and spo11-like mutations, characterised by a drastic decrease in chiasma formation at metaphase I associated with an absence of synapsis at prophase, were selected. This screen led to the identification of two populations of mutants classified according to their recombination defects: mutants that repair meiotic DSBs using the sister chromatid such as Atdmc1 or mutants that are unable to make DSBs like Atspo11-1. We found that in Arabidopsis thaliana at least four proteins are necessary for driving meiotic DSB repair via the homologous chromosomes. These include the previously characterised DMC1 and the Hop1-related ASY1 proteins, but also the meiotic specific cyclin SDS as well as the Hop2 Arabidopsis homologue AHP2. Analysing the mutants defective in DSB formation, we identified the previously characterised AtSPO11-1, AtSPO11-2, and AtPRD1 as well as two new genes, AtPRD2 and AtPRD3. Our data thus increase the number of proteins necessary for DSB formation in Arabidopsis thaliana to five. Unlike SPO11 and (to a minor extent) PRD1, these two new proteins are poorly conserved among species, suggesting that the DSB formation mechanism, but not its regulation, is conserved among eukaryotes

    Short-term but not long-term adrenalectomy modulates amplitude and frequency of the CRH41 episodic release in push-pull cannulated median eminence of free-moving rats.

    No full text
    International audienceCRH 41 release in push-pull cannulated median eminence (ME) was measured in unanesthetized male rats, 3 and 7 days after adrenalectomy (ADX) and in sham-lesioned controls. Perfusion started at 13.30 h and perfusate samples were collected at 5 min intervals for 3 h to estimate the mean release rate of CRH41. The major parameters of the neurohormone's episodic release pattern were analyzed using the Ultra algorithm. In a parallel study, 3 groups of similarly treated rats were used to measure plasma ACTH and hypothalamic CRH41. Three days after ADX, the plasma ACTH titers had risen 14-fold, the hypothalamic CRH41 content had decreased by 40%, while the CRH41 release in the ME had doubled as a result of a significant increase in most variables of the pulsatile release pattern: pulse frequency (+34%; P < 0.01), mean amplitude (+36%; P < 0.05), mean peak levels (+67%; P < 0.01) and mean pulse nadirs (x2.5; P < 0.01). Seven days after ADX, even though plasma ACTH had further increased to 30-times control levels, hypothalamic CRH41 content and CRH41 release in the ME had returned to almost control levels. The possible mechanisms of the discrepancy between the CRH and ACTH response time-courses following ADX are discussed

    Serotoninergic and suprachiasmatic nucleus involvement in the corticotropic response to systemic endotoxin challenge in rats.

    No full text
    International audienceWe have investigated whether the serotonin system participates in the mechanisms underlying the corticotropic response in experimentally infected rats. Intra-arterial injection of lipopolysaccharide (LPS; 25 microg/kg b.w.) resulted in a slight but significant increase in serotonin (5-HT) metabolism, detectable 60 min after the stimulus and lasting more than 480 min. Adrenocorticotropin (ACTH) and corticosterone (CORT) responses in intact rats conformed to earlier reports, increasing as early as 30 min after LPS injection and reaching maximal concentrations in the circulation 60 min after the bacterial endotoxin injection. Plasma concentrations of interleukin-1beta (IL-1beta) increased only after 60 min, reaching maximal levels 120 min after LPS. Depletion of hypothalamic 5-HT (-93%) by pretreatment of the animals with para-chlorophenylalanine (p-CPA), resulted in a halved ACTH response to LPS, despite an overall unchanged secretory pattern. Neither CORT nor IL-1beta secretory patterns were affected in these rats pretreated with p-CPA. Complete bilateral electrochemical lesions of the suprachiasmatic nucleus (SCN), which is innervated by mesencephalic 5-HT, impaired the early phase of the ACTH (-75% at 30 min) and CORT (-40% at 30 min) responses but did not affect the later increases of the corticotropic and the plasma IL-1beta responses following the LPS injection. These results indicate that serotonin pathways and SCN are involved in the earlier mechanisms of corticotropic axis recruitment following systemic LPS endotoxemia
    • …
    corecore