963 research outputs found

    Lightweight Asynchronous Verifiable Secret Sharing with Optimal Resilience

    Get PDF
    We present new protocols for *Asynchronous Verifiable Secret Sharing* for Shamir (i.e., threshold t<nt<n) sharing of secrets. Our protocols: * Use only lightweight cryptographic primitives, such as hash functions; * Can share secrets over rings such as Zpk\mathbb{Z}_{p^k} as well as finite fields Fq\mathbb{F}_q; * Provide *optimal resilience*, in the sense that they tolerate up to t<n/3t < n/3 corruptions, where nn is the total number of parties; * Are *complete*, in the sense that they guarantee that if any honest party receives their share then all honest parties receive their shares; * Employ *batching* techniques, whereby a dealer shares many secrets in parallel, and achieves an amortized communication complexity that is linear in nn, at least on the happy path , where no party *provably* misbehaves

    Changes in Physiology before, during, and after Yawning

    Get PDF
    The ultimate function of yawning continues to be debated. Here, we examine physiological measurements taken before, during, and after yawns in humans, in an attempt to identify key proximate mechanisms associated with this behavior. In two separate studies we measured changes in heart rate, lung volume, eye closure, skin conductance, ear pulse, respiratory sinus arrhythmia, and respiratory rate. Data were depicted from 75 s before and after yawns, and analyzed at baseline, during, and immediately following yawns. Increases in heart rate, lung volume, and eye muscle tension were observed during or immediately following yawning. Patterns of physiological changes during yawning were then compared to data from non-yawning deep inhalations. In one study, respiration period increased following the execution of a yawn. Much of the variance in physiology surrounding yawning was specific to the yawning event. This was not the case for deep inhalation. We consider our findings in light of various hypotheses about the function of yawning and conclude that they are most consistent with the brain cooling hypothesis

    An efficient quantum algorithm for the hidden subgroup problem in extraspecial groups

    Get PDF
    Extraspecial groups form a remarkable subclass of p-groups. They are also present in quantum information theory, in particular in quantum error correction. We give here a polynomial time quantum algorithm for finding hidden subgroups in extraspecial groups. Our approach is quite different from the recent algorithms presented in [17] and [2] for the Heisenberg group, the extraspecial p-group of size p3 and exponent p. Exploiting certain nice automorphisms of the extraspecial groups we define specific group actions which are used to reduce the problem to hidden subgroup instances in abelian groups that can be dealt with directly.Comment: 10 page

    Self-consistent theory of reversible ligand binding to a spherical cell

    Full text link
    In this article, we study the kinetics of reversible ligand binding to receptors on a spherical cell surface using a self-consistent stochastic theory. Binding, dissociation, diffusion and rebinding of ligands are incorporated into the theory in a systematic manner. We derive explicitly the time evolution of the ligand-bound receptor fraction p(t) in various regimes . Contrary to the commonly accepted view, we find that the well-known Berg-Purcell scaling for the association rate is modified as a function of time. Specifically, the effective on-rate changes non-monotonically as a function of time and equals the intrinsic rate at very early as well as late times, while being approximately equal to the Berg-Purcell value at intermediate times. The effective dissociation rate, as it appears in the binding curve or measured in a dissociation experiment, is strongly modified by rebinding events and assumes the Berg-Purcell value except at very late times, where the decay is algebraic and not exponential. In equilibrium, the ligand concentration everywhere in the solution is the same and equals its spatial mean, thus ensuring that there is no depletion in the vicinity of the cell. Implications of our results for binding experiments and numerical simulations of ligand-receptor systems are also discussed.Comment: 23 pages with 4 figure

    Algorithms for zero-dimensional ideals using linear recurrent sequences

    Get PDF
    Inspired by Faug\`ere and Mou's sparse FGLM algorithm, we show how using linear recurrent multi-dimensional sequences can allow one to perform operations such as the primary decomposition of an ideal, by computing the annihilator of one or several such sequences.Comment: LNCS, Computer Algebra in Scientific Computing CASC 201

    Perceptions of Rural Superintendents on Factors Influencing Employment Decisions

    Get PDF
    School districts struggle to attract and maintain a sufficient supply of highly capable superintendents. High-needs within rural districts, in particular, often are not able to attract and retain effective leaders. The issue of short superintendent tenure has drawn speculation and concern that revolving leadership may have negative consequences for schools and student achievement. A variety of factors contribute to superintendent turnover including: school board relations, job satisfaction, school district characteristics, and the personal characteristics of superintendents (Grissom & Anderson, 2012; Kamrath & Brunner, 2014; Wood, Finch & Mirecki, 2013). This study provides insight into perceptions of rural superintendents (n=10) and why they stay or leave their roles in rural Idaho school districts. As we look for ways to build capacity for leadership and social change in rural settings, it is important to understand factors influencing the stability of leadership from the superintendent role. Findings suggest that school boards remain the most influential factor

    Load Dependent Critical Speed

    Get PDF
    Case Stud

    A Machine-Checked Formalization of the Generic Model and the Random Oracle Model

    Get PDF
    Most approaches to the formal analyses of cryptographic protocols make the perfect cryptography assumption, i.e. the hypothese that there is no way to obtain knowledge about the plaintext pertaining to a ciphertext without knowing the key. Ideally, one would prefer to rely on a weaker hypothesis on the computational cost of gaining information about the plaintext pertaining to a ciphertext without knowing the key. Such a view is permitted by the Generic Model and the Random Oracle Model which provide non-standard computational models in which one may reason about the computational cost of breaking a cryptographic scheme. Using the proof assistant Coq, we provide a machine-checked account of the Generic Model and the Random Oracle Mode

    Hard Instances of the Constrained Discrete Logarithm Problem

    Full text link
    The discrete logarithm problem (DLP) generalizes to the constrained DLP, where the secret exponent xx belongs to a set known to the attacker. The complexity of generic algorithms for solving the constrained DLP depends on the choice of the set. Motivated by cryptographic applications, we study sets with succinct representation for which the constrained DLP is hard. We draw on earlier results due to Erd\"os et al. and Schnorr, develop geometric tools such as generalized Menelaus' theorem for proving lower bounds on the complexity of the constrained DLP, and construct sets with succinct representation with provable non-trivial lower bounds

    Group Diffie-Hellman Key Exchange Secure against Dictionary Attacks

    Get PDF
    Group Diffie-Hellman schemes for password-based key exchange are designed to provide a pool of players communicating over a public network, and sharing just a human-memorable password, with a session key (e.g, the key is used for multicast data integrity and confidentiality) . The fundamental security goal to achieve in this scenario is security against dictionary attacks. While solutions have been proposed to solve this problem no formal treatment has ever been suggested. In this paper, we define a security model and then present a protocol with its security proof in both the random oracle model and the ideal-cipher model
    • 

    corecore