
Lightweight Asynchronous Verifiable Secret Sharing with Optimal
Resilience

Victor Shoup1 ID and Nigel P. Smart2,3 ID

1 DFINITY, Zurich, Switzerland.
2 imec-COSIC, KU Leuven, Leuven, Belgium.

3 Zama Inc., Paris, France.
victor.shoup@dfinity.org.

nigel.smart@kuleuven.be/nigel@zama.ai.

May 30, 2023

Abstract. We present new protocols for Asynchronous Verifiable Secret Sharing for Shamir (i.e.,
threshold t < n) sharing of secrets. Our protocols:
– Use only “lightweight” cryptographic primitives, such as hash functions;
– Can share secrets over rings such as Z/(pk) as well as finite fields Fq;
– Provide optimal resilience, in the sense that they tolerate up to t < n/3 corruptions, where n is

the total number of parties;
– Are complete, in the sense that they guarantee that if any honest party receives their share then

all honest parties receive their shares;
– Employ batching techniques, whereby a dealer shares many secrets in parallel, and achieves an

amortized communication complexity that is linear in n, at least on the “happy path”, where no
party provably misbehaves.

https://orcid.org/0009-0003-6996-5660
https://orcid.org/0000-0003-3567-3304

Table of Contents

Lightweight Asynchronous Verifiable Secret Sharing with Optimal Resilience 1

Victor Shoup ID and Nigel P. Smart ID

1 Introduction . 3
1.1 Information Theoretic vs Computational Security . 4
1.2 The space in between: “lightweight” cryptography . 4
1.3 Fields vs Rings . 5
1.4 Application to AMPC . 6

2 Polynomial interpolation, Reed-Solomon codes, and secret sharing . 7
2.1 Polynomial interpolation . 7
2.2 Reed-Solomon codes . 8
2.3 Asynchronous verifiable secret sharing . 8
2.4 Higher-level secret sharing interfaces . 9
2.5 The number of roots of a polynomial . 10

3 Subprotocols . 11
3.1 Random Beacon . 11
3.2 Reliable broadcast . 12
3.3 Simple Asynchronous Agreement . 14
3.4 Secure Message Distribution . 14

4 Building Secure Message Distribution . 17
4.1 AVID: Asynchronous Verifiable Information Dispersal . 17
4.2 Reliable Message Distribution . 19
4.3 Secure Key Distribution . 19
4.4 Building Secure Message Distribution . 20

5 Our AVSS protocols . 20
5.1 Security analysis . 21
5.2 Communication Complexity . 25

The Happy Path. 26
Finite Field Case. 26
Galois Ring Case. 27
The Unhappy Path. 27

5.3 Using a Random Oracle instead of a Random Beacon . 27
6 Restricting the secrets to a subring . 28

6.1 Auxiliary rings . 29
6.2 Two special cases . 30
6.3 The protocol . 30
6.4 Security analysis . 31
6.5 Communication complexity . 34

Setting k′ := k. 34
Setting R := 1. 34

6.6 Using a Random Oracle instead of a Random Beacon . 34

https://orcid.org/0009-0003-6996-5660
https://orcid.org/0000-0003-3567-3304

1 Introduction

We present new protocols for asynchronous verifiable secret sharing (AVSS). An AVSS
protocol allows one party, the dealer, to distribute shares of a secret to parties P1, . . . , Pn. Important
properties of such a protocol are correctness, which means that even if the dealer is corrupt, the
shares received by the honest parties are valid (i.e., they correspond to points that interpolate a
polynomial of correct degree), and privacy, which means that if the dealer is honest, an adversary
should only learn the shares held by the corrupt parties. A third property that is important in many
applications is completeness, which means that if the dealer is honest, or if any honest party obtains
a share, then eventually all honest parties obtain a share. In this paper, we will only be interested in
AVSS protocols that satisfy the completeness property: some authors also call this asynchronous
complete secret sharing (ACSS). Our protocols allow the dealer to share secrets that lie in a
finite field Fq, or more generally a finite ring, such as Z/(pk).

In the asynchronous setting, we assume secure (authenticated and private) point-to-point chan-
nels between parties, but we do not assume any bound on how quickly messages are transmitted
between parties. In defining completeness, “eventually” means “if and when all honest parties initi-
ate the protocol and all messages sent between honest parties are delivered”. While there is a vast
literature on secret sharing in the synchronous communication model, there has been considerably
less research in the asynchronous model. We feel that this is unfortunate, as the asynchronous
model is the only one that corresponds to the practical setting of a wide area network. For this
reason, we focus exclusively on the asynchronous model.

It is well known that any AVSS protocol can withstand at most t < n/3 corrupt parties. If an
AVSS protocol can withstand this many corruptions, we say it provides optimal resilience. In
this paper, we will focus exclusively on AVSS protocols that provide optimal resilience.

We are mainly focused here in designing AVSS protocols with good communication complexity.
We define the communication complexity to be the sum of the length of all messages sent by honest
parties (to either honest or corrupt parties) over the point-to-point channels. That said, we are
interested protocols with good computational complexity as well.

In many applications, it is possible to run many AVSS protocols together as a “batch”. That
is, a dealer has many secrets that he wants to share, and can shares them all in parallel. Please
note that such “batched” secret sharing operations are not to be confused with “packed” secret
sharing operations: in a “batched” secret operation (a technique used, for example, in [DN07]),
many secrets are shared in parallel, resulting in many ordinary sharings, while in a “packed” secret
sharing (a technique introduced in [FY92]), many secrets are packed in a single sharing.4 With
“packed” secret sharing, one must sacrifice optimal resilience, which we are not interested in here.
Our focus will be exclusively on “batched” secret sharing. With “batching”, it is still possible to
achieve optimal resilience, while obtaining very good communication and computational complexity
in an amortized sense (i.e., per sharing).

We also make a distinction between the “happy path” and the “unhappy path”. To enter the
“unhappy path”, a corrupt party must provably misbehave. If this happens, all honest parties will
learn of this and can take action: in the short term, the honest parties can safely ignore this
party, and in the longer term, the corrupt party can be removed from the network. Also, such
provable misbehavior could lead to legal or financial jeopardy for the corrupt party, and this in

4 There is some inconsistency in the literature regarding this terminology. For example, what we call “batched”
secret sharing is called “packed” secret sharing in [AJM+22].

3

itself may be enough to discourage such behavior. Note that the “happy path” includes corrupt
behavior, including collusion among the corrupt parties, as well as behavior that is clearly corrupt
as observed by an individual honest party, but that cannot be used as reliable evidence to convince
other honest parties or an external authority of corrupt behavior. For these reasons, we believe it
makes sense to make a distinction between the complexity of the protocol on the “happy path”
versus the “unhappy path”.

1.1 Information Theoretic vs Computational Security

Up until now, most research in this area has been focused in two different settings: information
theoretic and computational. In the information theoretic setting, security is unconditional, while in
the computational setting, the protocol may use various cryptographic primitives and the security
of the protocol is conditioned on specific cryptographic assumptions. In the information theoretic
setting, one can further make a distinction between statistically secure protocols, which may be
broken with some negligible probability, and perfectly secure protocols, which cannot be broken at
all. We shall not be particularly interested in this distinction here. In the cryptographic setting,
the cryptography needed is often quite “heavyweight”, being based, for example, on the discrete
logarithm problem or even pairings.

– The state of the art in batched, complete AVSS protocols with optimal resilience in the infor-
mation theoretic setting (with statistical security) is the protocol from [CP23], which achieves
amortized communication complexity that is cubic in n.

– In contrast, the state of the art in batched, complete AVSS protocols with optimal resilience in
the computational setting is the protocol from [AJM+22], which achieves amortized communi-
cation complexity that is linear in n. This protocol relies on discrete logarithms and pairings
(although as noted in [GS22], pairings are not needed to achieve the same result if we amortize
over larger batches).

For both of these protocols, the complexity bounds are worst case bounds (making no distinction
between a “happy path” and a “unhappy path”).

1.2 The space in between: “lightweight” cryptography

In this paper, we explore the space between the information theoretic and computational settings.
Specifically, we consider the computational setting, but where we only allow “lightweight” cryp-
tographic primitives, such as collision resistant hash functions and pseudo-random functions. In
one of our protocols, we need to make a somewhat nonstandard (but entirely reasonable) assump-
tion about hash functions: a kind of related-key indistinguishability assumption for hash functions,
which certainly holds in the random oracle model [BR93] (see Section 4.3 for more details). In an-
other protocol, we fully embrace the random oracle model, which allows for a simpler protocol (and
one that we hypothesize is resistant to adaptive corruptions, rather than just static corruptions).
Both protocols are batched, complete AVSS protocols with optimal resilience that achieve commu-
nication complexity that is linear in n on the “happy path” and quadratic in n on the “unhappy
path”.

We believe there are several reasons to explore this space of protocols that rely only on
“lightweight” cryptography:

4

– Such protocols are obviously harder to break than protocols that rely on such things as discrete
logarithms and pairings. In particular, they provide post-quantum security.

– Such protocols will typically exhibit much better computational complexity than those that rely
on “heavyweight” cryptography. For example, the protocol in [AJM+22] requires that each
receiving party perform a constant number of exponentiations and pairings per sharing (in an
amortized sense). In contrast, in our protocol, each receiving party only performs a constant
number of field operations and hashes per sharing (again, in an amortized sense, at least on the
“happy path”).

Moreover, using any form of cryptography can allow improvements in both communication and
computational complexity over protocols using only information theoretic tools.

Our protocols do not require any public-key cryptography. However, as we shall point out, in a
practical implementation, it might be advantageous to sparingly use some public-key cryptographic
techniques in certain places.

1.3 Fields vs Rings

To our knowledge there has been no work in the asynchronous setting for VSS protocols sharing
secrets over rings such as Z/(pk), with all prior work in the setting focused on sharing elements
in finite fields Fq. In the synchronous setting there has recently been an interest in MPC over
rings such as Z/(pk), see, for example: [CDE+18,OSV20,CKL21,EXY22] in the dishonest majority
(and computational) setting; [ACD+19,ACD+20] in the honest majority setting (and information
theoretic) setting; and [JSL22] in the honest majority setting (and computational) setting.5 The
heart of the protocol [ACD+19] is a synchronous VSS protocol for elements in Z/(pk), which itself
is a natural generalization of the method for fields from [BTH06,BTH08]. The methods from these
last two papers are perfectly information theoretically secure.

Another approach, related to [BTH06,BTH08], is that of [DN07]. This is a statistically secure
information theoretic MPC protocol that works in the synchronous setting with honest majority,
which at its heart performs a highly efficient batched VSS protocol over the finite field Fq. The batch
is proved to be correct using a probabilistic checking procedure, which has a negligible probability
of being by-passed by an adversary (a similar probabilistic check was used in a different context in
[BGR98]). While [DN07] provides only statistical security, its advantage over other techniques is
the fact that the batch sizes are larger, resulting in a greater practical efficiency.

In the synchronous setting, generalizing these results from fields to Galois rings appears at first
sight to be tricky. The field results are almost all defined for Shamir sharing, which in its standard
presentation for n players over Fq, requires n > q. When working with rings such as Z/(2k) it is not
clear, a priori, that the theory for fields will pass over to the ring case. However, by using so-called
Galois rings and carefully defining the Shamir evaluation points and other data structures, the
entire theory for fields can be carried over to the ring setting with very little change. The original
work in this space for rings can be traced back, at least, to [Feh98], with a more complete treatment
being provided in [ACD+19]. The last paper generalizes the synchronous protocol from [BTH08] to
the case of Z/(pk) completely.

In this work we initiate the study of asynchronous VSS protocols for rings. As explained above
we focus on a middle ground which utilizes lightweight cryptography. Our motivating starting

5 For specific access structures, secret sharing over Z/(pk) for practical protocols is much older, going back to at
least the original Sharemind protocol [BLW08].

5

point is the underlying batched synchronous VSS protocol contained in [DN07]. At a high level,
this protocol works in the following steps:

1. The sharing party shares a large number of values.
2. After the shares are distributed a random beacon is called in order to generate a random value.

In [DN07] this is instantiated with a “standard” traditional VSS protocol.
3. Using the value from the random beacon random linear equations on the originally produced

shares are computed and opened. The checking of these random linear combination for correct-
ness implies the original shares are correct, with a negligible probability of success.

We follow the same strategy, but we need to modify this slightly, not only to deal with our asyn-
chronous network situation, but also to deal with the potential uses of rings such as Z/(pk).
In [DN07], a single linear equation is checked over a field extension, in the case of small q, in
order to obtain soundness. In our case we will need to check multiple such equations in parallel,
relying on a generalization of the Schwarz-Zippel lemma to rings.

Another technique we employ to move from the synchronous setting of [DN07] to our asyn-
chronous setting is the “encrypt then disperse” technique from [YLF+21]. However, as developed
in [YLF+21], this technique relies on “heavyweight” cryptography, including discrete logarithms
and pairings. We show how to replace all of this “heavyweight” cryptography by “lightweight”
cryptography.

In [DN07] the shared secret is guaranteed to be element in Fq if q is large enough to support
Shamir secret sharing over Fq, i.e. n < q. When sharing secrets in Z/(pk) (or a small finite fields
Fq with n ≥ q), the shares themselves lie in a Galois ring (or field) extension. In fact, a corrupt
dealer might share a secret that lies in the extension, rather than in the base ring (or field). In most
applications of our AVSS protocol, this will not be an issue (for example, in producing multiplication
triples for MPC protocols); however, in some applications, we really need to ensure that the shared
elements are indeed in the base ring (or field) and not some extension. In this situation, we require
further machinery, which we develop in Section 6.

1.4 Application to AMPC

Of course, as has already been alluded to one of the main applications of AVSS over fields is
to asynchronous secure multiparty computation (AMPC), especially in the information
theoretic setting. The state of art for AMPC with optimal resilience for arithmetic circuits over
finite fields in the information theoretic setting is the protocol from [CP23], whose communication
complexity grows as n4 · cM , where cM is the number of multiplication gates in the circuit to be
evaluated.

We can use our new “lightweight” cryptographic AVSS protocols as a drop-in replacement
for the information-theoretic AVSS protocol in [CP23], which yields an AMPC protocol whose
communication complexity grows as n2 · cM on the “happy path” and n3 · cM on the “unhappy
path”. One can easily improve the communication on the “happy path” to n · cM by assuming
that t < (1/3− ε) · n for some constant ε. Alternatively, one can achieve the same communication
bound with t < n/3 at least on a “very happy path” where at least (2/3 + ε) ·n parties are actually
online and cooperative (which in practice is often reasonable to assume). Indeed, the technique
in [CP23], which derives from [CP17], involves a step where we have to wait for n − t parties to
each contribute sharings of validated Beaver triples. From this collection of sharings, some number
of truly random shared triples may be extracted. Unfortunately, when n = 3 · t + 1, and we only

6

collect n−t = 2·t+1 triples, this extraction process yields only one truly random triple. However, in
practice, it may make sense to just wait a little while to try to collect more triples. Indeed, if we can
collect (2/3+ε)·n triples, we can extract Ω(n) truly random triples, and on this “very happy path”,
the communication complexity grows as n · cM . Note that this pragmatic approach to reducing the
communication complexity on this “very happy path” does not require us to assume anything more
than t < n/3 — so we still get optimal resilience, but we also get linear communication complexity
per multiplication gate on this “very happy path”.

As is well known, one can realize AMPC in the computational setting without using AVSS.
Indeed, the state of art for AMPC with optimal resilience in the computational setting is the
protocol from [Coh16], which has a communication complexity that is independent of the circuit size.
This protocol relies on very “heavyweight” cryptography: threshold fully homomorphic encryption
and threshold signatures. Using somewhat less “heavyweight” cryptography, namely, additively
homomorphic threshold encryption, the protocol in [HNP08] has communication complexity that
grows as n2 · cM .

So we see that with our new AVSS protocols, one can achieve secure AMPC in the computational
setting with very good communication complexity using only “lightweight” cryptography.

As has already been mentioned, our lightweight AVSS protocol works not only over fields but
over rings such as Z/(pk). These rings offer many advantages for various forms of MPC computation,
especially when the ring is chosen to be Z/(2k). It remains an open question as to how the above
techniques for AMPC can be extended from fields to rings, given our AVSS protocol as a building
block. In future work, we aim to investigate this in our context of utilizing lightweight cryptography.

2 Polynomial interpolation, Reed-Solomon codes, and secret sharing

We recall some basic facts about polynomial interpolation, Reed-Solomon codes, and secret sharing.
As we want to work over both finite fields and Galois rings, we state these facts more generally, work-
ing over an arbitrary, finite, commutative ring with identity. For more details see [ACD+19], [Feh98]
or [QBC13].

If A is a commutative ring with identity, we let A∗ denote its group of units. Let A[x] denote
the ring of univariate polynomials over A in the variable x. For positive integer d, let A[x]<d denote
the A-subalgebra of A[x] consisting of all polynomials of degree less than d.

2.1 Polynomial interpolation

The key to making polynomial interpolation work over an arbitrary ring A is to restrict the choice
of points at which we evaluate polynomials over A. To this end, we work with the notion of an
exceptional sequence, which is a sequence {si}i∈I such that each si ∈ A, and for all i, j ∈ I with
i 6= j, we have si − sj ∈ A∗. When ordering does not matter, we use the (somewhat nonstandard
but more natural) term exceptional set to denote a set E ⊆ A such that s− t ∈ A∗ for all s, t ∈ E
with s 6= t. Clearly, if E is an exceptional set, then so is any subset of E . The size of the largest
exceptional set in a ring A is called the Lenstra constant of the ring.

For example, if A is a field, then A is itself an exceptional set. As another example, suppose
A is a Galois ring Z[y]/(pk, F (y)), where F (y) is a monic polynomial of degree δ whose image in
Z/(p)[y] is irreducible. Then A contains an exceptional set of size pδ. Such a set E may be formed
by taking any set of polynomials in Z[y] whose images in Z[y]/(p, F (y)) are distinct, and setting E
to be the images of these polynomials in Z[y]/(pk, F (y)).

7

So now consider an exceptional sequence of evaluation coordinates e = (e1, . . . , en) ∈ An.
Because e is an exceptional sequence, polynomial interpolation with respect to these evaluation
coordinates works just as expected. That is, for every a = (a1, . . . , an) ∈ An, there exists a unique
polynomial f ∈ A[x]<n such that f(ej) = aj for all j ∈ [n]. Indeed, the coefficient vector of f
is given by a · V −1, where V ∈ An×n is the Vandermonde matrix determined by the vector of
evaluation coordinates e. Because e is an exception sequence, the determinant of V is a unit, and
hence V is invertible.

2.2 Reed-Solomon codes

Let A be a ring and e ∈ An be a exceptional sequence. For a positive integer d, we define the
(n, d)-Reed-Solomon code over A (with respect to e) to be the A-subalgebra of An consisting of
the vectors

{(f(e1), . . . , f(en)) : f ∈ A[x]<d}.

Elements if this subalgebra are called codewords. Let C ∈ An×(n−d) be the matrix consisting of the
rightmost n− t columns of V −1. Then for each a ∈ An, we see that a is a codeword if and only if
a · C = 0 (this just expresses the condition that the unique polynomial obtained by interpolation
has degree less than d). The matrix C is also known as the check matrix for the code.

2.3 Asynchronous verifiable secret sharing

We now turn to secret sharing, specifically, asynchronous verifiable secret sharing (AVSS). We have
n parties P1, . . . , Pn, of which at most t < n/3 may be corrupt. We assume static corruptions
(although we claim, without a full proof, that one of our AVSS protocols of our protocols are secure
against adaptive corruptions in the random oracle model). Let H denote the indices of the honest
parties, and let C denote the indices of the corrupt parties.

We assume the parties are connected by secure point-to-point channels, which provide both
privacy and authentication. As we are working exclusively in the asynchronous communication
model, there is no bound on the time required to deliver messages between honest parties.

Let A be a ring and e ∈ An be a exceptional sequence. An (n, d, L)-AVSS protocol over A
(with respect to e) should allow a dealer D ∈ {P1, . . . , Pn} to deal polynomials f1, . . . , fL ∈ A[x]<d
to P1, . . . , Pn in such a way that the following conditions are satisfied:

Completeness: If one honest party outputs a value, then every honest party eventually
outputs a value. Moreover, if D is honest, then every honest party eventually outputs a
value.

Correctness: There exists polynomials f̂1, . . . , f̂L ∈ A[x]<d, such that for any honest party
Pj that outputs a value, that value is {f̂`(ej)}L`=1. Moreover, if D is honest, then f̂` = f`
for ` ∈ [L].

Privacy: If D is honest, the protocol should reveal no more to the adversary than the
values {

f`(ej)
}
`∈[L]
j∈C

,

that is, the shares of the corrupt parties.

8

The correctness and privacy properties can be better captured by working in the universal
composability (UC) framework [Can00] and defining an ideal functionality Favss, see Figure 1, that
captures the correctness and privacy properties.

Note that this ideal functionality does not capture at all the completeness property: this is a
separate property, which means that if

– the dealer is honest or any honest party outputs a value,
– all honest parties have initiated the protocol, and
– all messages sent between honest parties have been delivered,

then all honest parties have output a value. One can show that like security, completeness is a com-
posable property in the UC framework. That is, one can naturally define the notion of completeness
for a hybrid protocol which makes use of ideal functionalities as subprotocols, and it is a simple
exercise to show that if we replace these idealized subprotocols by complete, concrete protocols
that securely realize these functionalities, the resulting protocol is a concrete protocol that is se-
cure and complete. Completeness for such a hybrid protocol is the same as for a concrete protocol,
except that in addition to the condition that all messages sent between honest parties have been
delivered, we also add the condition that all RequestOutput messages for the ideal functionalities
have been delivered — in fact, concrete protocols are really hybrid protocols with an appropriate
secure messaging ideal functionality, and so this is actually the same condition.6

Favss

Input(f1, . . . , fL): this operation is invoked once by the dealer D, who inputs polynomials f1, . . . , fL ∈ A[x]<d

to Favss. In response, Favss sends the message NotifyInput() to the ideal-world adversary.
RequestOutput(j): after the input has been received, this operation may be invoked by the ideal-world

adversary, who specifies j ∈ [n]. In response, Favss sends to Pj the message

Output
({

f`(ej)
}
`∈[L]

)
.

Fig. 1. The AVSS Ideal Functionality (parameterized by n, d, L, A, e, and D)

2.4 Higher-level secret sharing interfaces

Our ideal functionality Favss essentially matches that in [CP23], and models a rather minimalistic,
low-level interface. As given, the dealer inputs polynomials over A and parties receives shares.
However, there are no interfaces for encoding a secret value as a polynomial, or for performing
various operations on shares, such as opening shares, combining shares to reconstruct a secret, or
performing linear operations on sharings.

Our choice of this minimalistic interface is intentional, as it is simple and sufficient for our
immediate needs. However, higher-level interfaces can easily be implemented on top of it using
standard techniques. For example, the standard way to encode a secret s ∈ A as a polynomial is
to make s the constant term of the polynomial and choose the other coefficients at random. Doing

6 In related work, [CP23] study AVSS and AMPC protocols in the UC framework, but make use of a formal notion
of time [CP23] introduced in [KMTZ13]. We claim that this extra machinery is unnecessary.

9

this, the secret is essentially encodes as the value of the polynomial at the evaluation coordinate
0. For this to work, we require that (0, e1, . . . , en) is an exceptional sequence. If this requirement is
satisfied, and if d > t, then we know that the shares leaked to the adversary reveal no information
about the secret s. Moreover, if n ≥ d+2 · t, we know we can reconstruct the polynomial, and hence
the secret, using a protocol based on “online error correction” (originating in [BCG93], but see
[CP17] for a nice exposition of this and many other related protocols in the asynchronous setting).
However, this is not the only mechanism that may be used to encode a secret. For example, one
may in fact encode the secret as the leading coefficient, rather than the constant term — while
this alleviates the requirement of extending the vector of evaluation coordinates to n+ 1 elements,
it may not be convenient in some applications. As another example, with “packed” secret sharing,
several secrets may be encoded in a polynomial, by encoding these secrets at different evaluation
coordinates [FY92] — while this can improve the performance of some higher-level protocols, it
also reduces the resiliency of such protocols.

Also observe that our minimalistic interface also requires that the ring A already has appropriate
evaluation coordinates. In some applications, the secret may lie in some ring S that does not contain
a large enough exceptional sequence. For example, S may be a finite field Fq where q is very small,
or a ring such as Z/(pk), where p is very small. In this case, the standard technique is to secret
share over an a larger ring A ⊇ S — for example, a field extension in the case S = Fq or a Galois
ring extension in the case S = Z/(pk). Note that a direct application of this technique allows a
corrupt dealer to share a secret that lies in A \ S. In some applications, this may be acceptable,
while in others, it may not. In Section 6, we show how our basic AVSS protocols for secret sharing
over A can be extended to enforce the requirement that secrets do in fact lie in the subring S.

2.5 The number of roots of a polynomial

The following result is standard. Since it is typically proved with respect to fields, for completeness,
we give a proof here with respect to rings.

Lemma 2.1 (Schwartz-Zippel over rings). Let A denote a commutative ring with identity and
let P ∈ A[x1, x2, . . . , xn] be a non-zero polynomial of total degree d ≥ 0. Let E ⊆ A be an exceptional
set, and let r1, . . . , rn be selected uniformly, and independently, from E. Then

Pr[P (r1, . . . , rn) = 0] ≤ d

|E|
.

Proof. We first consider the case of univariate polynomials. Let f ∈ A[x] be of degree d. We show
that it can only have at most d roots in E . This is done by induction, with the base case of d = 0
being trivial. Now suppose f(x) is of degree d + 1, and the result is true for polynomials of degree
d. We work by contradiction and assume that f(x) has d + 2 distinct roots in E , which we label
r1, . . . , rd+2. We can write f(x) = (x− rd+2) · g(x) for some polynomial g(x) of degree d. Since the
roots come from an exceptional set we know that ri − rd+2 is invertible for every i = 1, . . . , d + 1.
Hence r1, . . . , rd+1 must be roots of g(x), and so g(x) has d+ 1 distinct roots. This contradicts the
inductive hypothesis.

We now prove the main result for multivariate polynomials by induction on n, where the base
case of n = 1 is the univariate case we just considered. So we assume the statement holds for n ≥ 1,
and consider the case of multinomial with n+ 1 variables f(x1, . . . , xn+1). We can write

f(x1, . . . , xn) =
∑
i≤d

xin+1 · fi(x1, . . . , xn)

10

where fi is a multinomial in n variables. Since f(x1, . . . , xn+1) is not identically zero there is at
least one fi(x1, . . . , xn) which is not identically zero. Let d′ denote the largest such index i. We
have deg(fd′) ≤ d− d′ since f has degree at most d.

We know, by the inductive hypothesis, that

Pr[fd′(r1, . . . , rn) = 0] ≤ d− d′

|E|
,

for randomly chosen r1, . . . , rn ∈ E .
Now if fd′(r1, . . . , rn) 6= 0 then f(r1, . . . , rn, xn+1) is a non-zero univariate polynomial of degree

d′. So by the base case we have, for randomly chosen rn+1 ∈ E ,

Pr[f(r1, . . . , rn, rn+1) = 0 | fd′(r1, . . . , rn) 6= 0] ≤ d′

|E|
.

By Bayes’ Theorem, and some manipulation, we therefore have

Pr[f(r1, . . . , rn, rn+1) = 0] ≤ d− d′

|E|
+

d′

|E|
=

d

|E|
.

ut

3 Subprotocols

In this section, we review the subprotocols that our new AVSS protocol will need.

3.1 Random Beacon

This is a protocol that reveals a value ω chosen at random from an output space Ω, in such a
way that the following conditions are satisfied:

Completeness: If at least t + 1 honest parties initiate the protocol, every honest party
eventually outputs a value.

Correctness: All honest parties that output a value output the same value ω.
Privacy: The value ω remains unpredictable at any time before at least one honest party

initiates the protocol.

The random beacon is best defined in terms of an ideal functionality FBeacon, see Figure 2.

FBeacon

Input(): This operation may be invoked once by each party Pj . If this is the first time this is invoked by any
honest party, FBeacon chooses ω ∈ Ω at random and sends NotifyInput(j, ω) to the ideal-world adversary;
otherwise, FBeacon sends NotifyInput(j) to the ideal-world adversary.

RequestOutput(j): after the value ω has been generated, this operation may be invoked by the ideal-world
adversary, who specifies j ∈ [n]. In response, Favss sends to Pj the message Output(ω).

Fig. 2. The Random Beacon Functionality FBeacon (parameterized by output space Ω)

11

As it will only be run a small number of times, a random beacon can be securely realized with
a statistically secure protocol based on any AVSS protocol and any consensus protocol, using the
standard technique of agreeing on a set of t+ 1 secret sharings, and then opening all of them and
adding them up. This will not affect the amortized complexity of our batched AVSS protocol. That
said, we will also give a simpler batched AVSS protocol that does not need a random beacon, but
instead is analyzed in the random oracle model.

It is also possible, and perhaps more practical, to implement a random beacon using “heavy-
weight” cryptography. A standard way to do this is to use a (t+1)-out-of-n threshold BLS signature
scheme [BLS01,Bol03,SJK+17]. Despite being based on “heavyweight” cryptography, this beacon is
efficient enough for our purposes; however, using it requires assuming a hardness assumption which
is not post-quantum secure.

3.2 Reliable broadcast

A reliable broadcast protocol allows a sender S to broadcast a single message m to P1, . . . , Pn
in such a way that the following conditions are satisfied:

Completeness: If one honest party outputs a message, then every honest party eventually
outputs a message. Moreover, if S is honest, then every honest party eventually outputs
a message.

Correctness: All honest parties that output a message output the same message. Moreover,
if S is honest, that message is m.

We say that S reliably broadcasts m, and that a party reliably receives m. The correctness
property can alternatively be better captured by an ideal functionality FReliableBroadcast, given in
Figure 3. Note that this ideal functionality does not capture at all the completeness property: this
is a separate property. A simple protocol for this, called Bracha Broadcast [Bra87], is given in
Figure 4.

FReliableBroadcast

Input(m): this operation is invoked once by the sender S, who inputs a message m. In response,
FReliableBroadcast sends the message NotifyInput(m) to the ideal-world adversary.

RequestOutput(j): after the input has been received, this operation may be invoked by the ideal-world
adversary, who specifies j ∈ [n]. In response, FReliableBroadcast sends to Pj the message Output(m).

Fig. 3. The Reliable Broadcast Ideal Functionality (parameterized by S)

The communication complexity of this protocol is O(n2 · |m|). However, protocols with better
communication can be obtained by use of erasure codes. The basic idea of an erasure coded broadcast
is as follows. Given a long message m, the sender S encodes the message using an (n, n−2 · t)-Reed-
Solomon code, to obtain a vector of n fragments (f1, . . . , fn) from which m can be reconstructed
from any subset of n−2 · t fragments. Each fragment has size roughly |m|/(n−2 · t) — so assuming
n > 3 · t, the size of each fragment is at most roughly 3 · |m|/n. The sender S then sends each
fragment fj to party Pj , who then echoes that fragment to all other parties. Each party can then
collect enough fragments to reconstruct m. To deal with dishonest parties, some care must be

12

ΠBrachaBroadcast

// Sender S with input m
send (send,m) to P1, . . . , Pn

// Receiving party Pj

acquired← false
voted← false

repeat forever:
wait for either:

not acquired and ∃m: received (send,m) from S:
acquired← true
send (echo,m) to P1, . . . , Pn

not voted and ∃m: received (echo,m) from n− t distinct parties:
send (vote,m) to P1, . . . , Pn

voted← true

not voted and ∃m: received (vote,m) from t+ 1 distinct parties:
send (vote,m) to P1, . . . , Pn

voted← true

∃m: received (vote,m) from n− t distinct parties:
output m
halt

Fig. 4. Bracha’s Protocol for Reliable Broadcast

13

taken. This approach was initially considered in [CT05], who give a protocol with communication
complexity O(n·|m|+λ·n2 ·log n). Here, λ is the output length of a collision-resistant hash function.
The factor log n arises from the use of Merkle trees. If |m| � λ ·n · log n, this is essentially optimal.
For somewhat shorter messages, a protocol such as that in [DXR21] may be used, which achieves a
communication complexity of O(n·|m|+λ·n2). Note that while the protocol in [CT05] uses only the
Reed-Solomon as an erasure code, the protocol in [DXR21] uses a the error correcting properties
of Reed-Solomon to avoid the use of Merkle trees. One advantage of the scheme in [CT05] over
that in [DXR21] is that the former has a more balanced communication pattern, which can be
important to prevent bandwidth bottlenecks. The paper [DXR22] improves on [DXR21], obtaining
the same communication complexity, but with a balanced communication pattern. Despite these
improvements, [CT05] may still be preferable, especially when |m| � λ·n·log n, as its computational
complexity is somewhat lower.

3.3 Simple Asynchronous Agreement

A degenerate version of Bracha broadcast can be used as a simple asynchronous agreement primi-
tive, see Figure 5. The key properties of this protocol are:

Completeness: If one honest party outputs done, then every honest party eventually out-
puts done. Moreover, if all honest parties initiate the protocol with input true, then every
honest party eventually outputs done.

Correctness: If any honest party outputs done, then at least n−2·t honest parties initiated
the protocol with input true.

The correctness property can alternatively be captured by an ideal functionality FAsyncAgreement,
given in Figure 6. Note that this ideal functionality does not capture at all the completeness
property: this is a separate property.

3.4 Secure Message Distribution

We require a new type of protocol, which we call a secure message distribution protocol. Such
a protocol enables a sender S to securely distribute a vector m = (m1, . . . ,mn) of messages, so
that during an initial distribution phase, each mj is delivered to Pj . After this, party Pj may then
choose to authentically forward its message mj to other parties. This last property will be needed
to deal with the “unhappy” path of our AVSS protocol. We also require that if the sender is honest,
then the adversary learns nothing about message mj unless Pj is corrupt or authentically forwards
mj to a corrupt party.

We can formulate the required properties more precisely as follows.

Distribution completeness: If one honest party securely receives a distributed message, then ev-
ery honest party eventually does so. Moreover, if S is honest, then every honest party eventually
securely receives a distributed message.

Distribution correctness: If S is honest and securely distributes m = (m1, . . . ,mn), then when
an honest party Pj securely receives a distributed message, that message is mj .

Forward completeness: If an honest party Pj authentically forwards its message to an honest
party Pi, then eventually Pi authentically receives a forwarded message from Pj .

Forward correctness: All honest parties that authentically receive a forwarded message from
some party Pj receive the same message. Moreover:

14

ΠAsyncAgreement

Each party Pj takes as input a boolean value vj ∈ {true, false} and runs as follows.

voted← false
if vj then send (ok) to P1, . . . , Pn

repeat forever:
wait for either:

not voted and received (ok) from n− t distinct parties:
send (vote) to P1, . . . , Pn

voted← true

not voted and received (vote) from t+ 1 distinct parties:
send (vote) to P1, . . . , Pn

voted← true

received (vote) from n− t distinct parties:
output done
halt

Fig. 5. Degenerate Version of Bracha’s Protocol for Asynchronous Agreement

FAsyncAgreement

Input(vj): This operation may be invoked once by each party Pj , who inputs a boolean value vj . In response,
FAsyncAgreement sends NotifyInput(j, vj) to the ideal-world adversary.

RequestOutput(j): after n − 2 · t honest parties have input the value true, this operation may be invoked
by the ideal-world adversary, who specifies j ∈ [n]. In response, FAsyncAgreement sends to Pj the message
Output(done).

Fig. 6. The Simple Asynchronous Agreement Ideal Functionality FAsyncAgreement

15

– if Pj is honest, then that message is the same distributed message that Pj securely received,
and

if S is honest and securely distributes m = (m1, . . . ,mn), that message is mj .

Privacy: If the sender is honest and no honest party Pj forwards its message mj to any other
party, then the adversary learns nothing about these messages mj belonging to the honest Pj ’s.

Note that whenever a party either securely receives a distributed message or authentically receives
a forwarded message, that message may be ⊥, which can only happen if the sender is corrupt.

It will also be convenient for us to allow a party Pj to authentically forward a tag along with
the distributed message mj . There is no requirement that these tags are consistent in any way (i.e.,
one party may receive an authentically forwarded message with one tag, while another may receive
the same message with a different tag).

It is best to formulate the correctness and privacy properties for secure message distribution
as an ideal functionality FSecMessDist, given in Figure 7. Note that this ideal functionality does
not capture at all the completeness property: this is a separate property. Also note that besides
correctness and privacy, a protocol that securely realizes this ideal functionality must also be input
extractable, in the sense that if the sender is corrupt, a simulator (i.e., ideal-world adversary) can
extract all of the messages m = (m1, . . . ,mn) before delivering any message to an honest party.
This property will also be crucial in our AVSS protocol.

We note that this ideal functionality is stronger than we need, in the sense that we may assume
that if the sender is honest, then no honest Pj will forward its message mj to any other party. As
we will see, this constraint will be satisfied by our AVSS protocol. In the UC framework, this can
be captured by only considering restricted environments that satisfy this constraint. (It is possible
to lift this constraint, however, in the random oracle model.)

FSecMessDist

Input(distribute,m): this operation is invoked once by the sender S, who inputs a message vector m =
(m1, . . . ,mn). In response, FSecMessDist sends the message NotifyInput(distribute) to the ideal-world ad-
versary.

RequestOutput(distribute, j): after the input m = (m1, . . . ,mn) has been received, this operation may be
invoked by the ideal-world adversary, who specifies j ∈ [n]. In response, FSecMessDist sends to Pj the
message Output(distribute,mj).

Input(forward, i, tagji): after Pj has received mj , it may invoke this operation once per i ∈ [n] (indicating
that the message mj should be forwarded to player Pi with tag tagji). In response, FSecMessDist sends the
message NotifyInput(forward, j, i, tagji) to the ideal-world adversary.

RequestOutput(forward, j, i): after Pj has invoked Input(forward, i, tagji), this operation may be invoked by
the ideal-word adversary. In response, FSecMessDist sends the message Output(forward, j,mj , tagji) to Pi.

Fig. 7. The Ideal Functionality for Secure Message Delivery FSecMessDist (parameterized by S)

In Section 4 we give a secure message distribution protocol that is built from “lightweight”
cryptographic primitives, specifically, semantically secure symmetric key encryption and a hash
function. The hash function needs to be collision resistant and to also satisfy a kind of related-key
indistinguishability assumption (see Section 4.3) for more details). The communication complexity
of the distribution phase of our protocol is O(|m|+λ ·n2 · log n). Later, if Pj authentically forwards

16

its message mj to a single party, this contributes an additional O(|mj | + λ · n · log n) to the
communication complexity.

In our application to AVSS, we will only use the forwarding mechanism on the “unhappy path”,
in which a corrupt sender provably misbehaves. In particular, unless we are on the “unhappy path”,
the forwarding mechanism will not contribute to the communication complexity at all.

4 Building Secure Message Distribution

In this section we show how to build the functionality FSecMessDist from Figure 7.
Note that [YLF+21] and [GS22] show how to implement this type of functionality using “heavy-

weight” cryptographic primitives based on discrete logarithms. In particular, [GS22] rigorously
defines a particular multi-encryption primitive with an appropriate notion of chosen ciphertext se-
curity and a verifiable decryption protocol, and presents practical constructions that are provably
secure in the random oracle model.

While such constructions may well yield acceptable performance in practice, we show here
that one can implement this functionality using only “lightweight” cryptographic primitives. The
resulting protocols are certainly more efficient than those based on discrete logarithms.

4.1 AVID: Asynchronous Verifiable Information Dispersal

Our secure message distribution is based on techniques used for Asynchronous Verifiable Infor-
mation Dispersal, or AVID. Although we will not use an AVID protocol directly, we review the
definition of AVID and the relevant implementation techniques.

In an AVID protocol, a sender S wants to send a message m to some or possibly all of the parties
P1, . . . , Pn. There are two phases to such a protocol: the dispersal phase, where S disperses m (or
fragments of m) among P1, . . . , Pn, and the retrieval phase, where individual Pj ’s may retrieve
m. An AVID protocol should satisfy the following properties:

Dispersal completeness: If one honest party completes the dispersal phase, then every
honest party eventually completes the dispersal phase. Moreover, if the sender is honest,
then every honest party eventually completes the dispersal phase.

Retrieval completeness: If the retrieval phase for an honest party Pj is initiated, then
Pj eventually outputs a message.

Correctness: All honest parties that retrieve a message output the same message. More-
over, if the sender is honest, that message is m.

Clearly, any AVID protocol can be used to implement reliable broadcast. A simple and effi-
cient AVID protocol is used in the DispersedLedger system [YPA+21]. That AVID protocol has
a communication complexity of O(|m| + λ · n2) in the dispersal phase and O(|m| + λ · n · log n)
per retrieval. Implementing reliable broadcast using this AVID protocol results in a protocol with
the same communication complexity as that in [CT05]. Just as in [CT05], the factor log n arises
from Merkle trees. The paper [DXR22] gives an AVID protocol with an improved communication
complexity of O(|m|+ λ · n) per download (but with somewhat greater computational complexity,
as it relies heavily on error correction, whereas DispersedLedger’s protocol does not).

For reference, we present the DispersedLedger protocol7 in Figure 8. The dispersal phase is a
simple variation of Bracha broadcast, which disperses the fragments of an erasure coding to the

7 We actually present a somewhat simplified version of their protocol, in which the only “clients” that retrieve a
message are the “servers” Pj .

17

ΠDispersedLedger

// Sender S with input m
encode m as (f1, . . . , fn) using an (n, n− 2t)-Reed-Solomon code
compute the Merkle tree on (f1, . . . , fn) with root r
for j ∈ [n] : send (disperse, r, πj , fj) to Pj ,

where πj is the validation path for fj under r

// Dispersal phase for party Pj

acquired← false, voted← false, result← ⊥
(r∗, π∗j , f

∗
j)← (⊥,⊥,⊥)

repeat forever:
wait for either:

not acquired and ∃(r, πj , fj): received (disperse, r, πj , fj) from S:
acquired← true
if πj is a correct validation path for fj under r then

(r∗, π∗j , f
∗
j)← (r, πj , fj)

send (echo, r) to P1, . . . , Pn

not voted and ∃r: received (echo, r) from n− t distinct parties:
send (vote, r) to P1, . . . , Pn

voted← true

not voted and ∃r: received (vote, r) from t+ 1 distinct parties:
send (vote, r) to P1, . . . , Pn

voted← true

∃r: received (vote, r) from n− t distinct parties:
if r 6= r∗ then (r∗, π∗j , f

∗
j)← (r,⊥,⊥)

result← (r∗, π∗j , f
∗
j)

terminate dispersal phase

// Retrieval logic for party Pj

obtain a pair (π∗i , f
∗
i) from each of n− 2t distinct parties Pi,

where each π∗i is a correct validation path for f∗i under r∗

reconstruct the message m′ from the n− 2t fragments {fi}i
compute the fragments (f ′1, . . . , f

′
n) of message m′

compute the Merkle tree for (f ′1, . . . , f
′
n) with root r′

if r∗ = r′

then output m′

else output ⊥

Fig. 8. DispersedLedger Protocol

18

parties. For the erasure code, we may use an (n, n − 2t)-Reed-Solomon code, or any erasure code
with the property that any n− 2t fragments can be used to reconstruct the original message.

Party Pj completes the dispersal phase when it sets a value result = (r∗, π∗j , f
∗
j), and we say it

holds the root r∗ and if (π∗j , f
∗
j) 6= (⊥,⊥), we say it holds a fragment. One can show that if any honest

server completes the dispersal phase holding a root, then eventually all honest servers complete the
dispersal phase holding the same root, and among these, at least n− 2t hold a fragment.

When the retrieval phase for a party Pj is initiated, it obtains a pair (π∗i , f
∗
i) from each of n−2t

distinct parties Pi. Each such pair must be valid, in the sense that π∗i is a correct validation path
for f∗i under r∗. Party Pj then reconstructs a message m′ from these n−2t fragments, computes all
the fragments (f ′1, . . . , f

′
n) of this message m′, and computes the Merkle tree for (f ′1, . . . , f

′
n) with

root r′. If r∗ = r′, party Pj outputs m′; otherwise, it outputs ⊥.
Note that regardless of whether the sender is honest or not, every party will output the same

message (which may be ⊥). Moreover, if the sender is honest, this output will be the same as the
message uploaded (and not ⊥). We have left out the details of how a retrieval is initiated. This is
somewhat application specific, and the details are not important to us here.

One can verify that this AVID protocol has a communication complexity of O(|m|+ λ · n2) in
the dispersal phase and O(|m|+ λ · n · log n) per retrieval.

4.2 Reliable Message Distribution

Recall the notion of a secure message distribution protocol, which we introduced in Section 3.4. As
a stepping stone, we introduce the notion of a reliable message distribution protocol, which
satisfies all of the properties of secure message distribution except privacy.

We can implement this using a variant of the DispersedLedger AVID protocol in which the
sender sends each Pj the collection of values {(ri, πij , fij)}ni=1, who then forms a Merkle tree from
(r1, . . . , rn) with root r. Here, each mi is encoded as a vector of fragments (fi1, . . . , fin), and these
fragments form the leaves of a Merkle tree with root ri. The “echo” and “vote” stages of the
protocol use the value r. Once the “vote” stage of the protocol finishes, each party Pj retrieves mj

by obtaining from each server Pi that holds a fragment the values πj , rj , πji, fji, where πj is the
validation path for rj under r.

The communication complexity of the distribution phase is O(|m|+ λ · n2 · log n). Later, if Pj
wants to authentically forward its message mj to Pi, it sends the collection of values πj , rj , πji, fji
obtained above to Pi. This contributes O(|mj |+ λ · n · log n) to the total communication cost.

Note that when an honest party receives an authentically forwarded message from a corrupt
party, this does not contribute anything to the communication complexity.

4.3 Secure Key Distribution

The above reliable message distribution protocol does not provide any data privacy. This can be
remedied by augmenting it with a protocol for secure key distribution. Here, the sender S
securely distributes a vector of keys k = (k1, . . . , kn). Here, the keys k1, . . . , kn are not input by
the sender, but rather are generated by the protocol itself, and the sender obtains k at the end of
the protocol. The same properties above should hold, namely, distribution/forward completeness
and correctness. In addition, the following property should hold:

Privacy: If the sender is honest and no honest party Pj forwards its key kj to any other party,
then the adversary learns nothing about these keys kj belonging to the honest Pj ’s.

19

To implement such a scheme, we modify the reliable message distribution protocol above so
that instead of encoding a key ki using an erasure code, the sender proceeds as follows. For each
i ∈ [n], the sender chooses an random polynomial fi ∈ K<n−2t for an appropriate (large) finite
field K. Let sij := fi(ηj) for j ∈ [0..n]. Here, {ηj}j∈[0..n] is some arbitrary collection of distinct
coordinates in K. The key ki is defined as ki := H(si0) for an appropriate cryptographic hash H.
The sender builds a Merkle tree with root ri and leaves {H(sij)}nj=1.

To distribute the vector of keys k = (k1, . . . , kn), the sender sends each Pj the collection of
values {(ri, πij , sij)}ni=1. The rest of the protocol goes through in an analogous obvious way.

One can easily prove that this protocol satisfies our definition of a secure key distribution
protocol, under the assumption that the hash function used to implement the Merkle trees is
collision resistant, and the following assumption on the hash function H, which we might call the
linear hiding assumption. This assumption is defined by a game in which the adversary first
chooses distinct pairs (a1, b1), . . . , (am, bm) ∈ K2, with each ai 6= 0. The task of the adversary is to
distinguish the distribution

(H(a1 · r + b1), . . . ,H(am · r + bm)),

where r ∈ K is randomly chosen, from the uniform distribution on Km, where K is the output space
of H. The assumption states that no computationally bounded adversary can effectively distinguish
these two distributions. This assumption is certainly true in the random oracle model, assuming
m2/|K| is negligible (just to avoid collisions on the inputs to H), and so it seems a reasonable
assumption (a kind of “related key attack” assumption).

Assuming individual keys are of size O(λ), the communication complexity of the distribution
phase is O(λ ·n2 · log n). Later, if Pj wants to authentically forward its key kj to Pi, this contributes
O(λ · n · log n) to the communication complexity.

4.4 Building Secure Message Distribution

Finally we can build FSecMessDist using the tools we have just defined. We just need to combine a
secure key distribution protocol with a reliable message distribution protocol, where the latter is
used to distribute a vector of ciphertexts, each encrypting a message under the corresponding key.
In fact, we can combine the protocols into a single protocol where there is just a single root r that
controls both the keys and the ciphertexts.

One can show that the protocol obtained by combining the secure key distribution and reli-
able message distribution protocols presented above securely realizes FSecMessDist with respect to
restricted environments that never request that an honest party authentically forwards its message
if S is honest. This is sufficient for our application. The communication complexity of the distribu-
tion phase is O(|m| + λ · n2 · log n). Later, if Pj authentically forwards its message mj to Pi, this
contributes O(|mj |+ λ · n · log n) to the communication complexity.

5 Our AVSS protocols

We now present our new AVSS protocol. This is a generic protocol which works over an arbitrary
ring. We will show how to instantiate it over finite fields and Galois rings. As will see, different
instantiations lead to different failure bounds in the analysis.

Notation is as in Section 2; specifically, we have a finite commutative ring A and a vector of
evaluation coordinates e = (e1, . . . , en) ∈ An that forms an exceptional sequence, that is, we have

20

ei − ej ∈ A∗ for all i 6= j. We have n parties P1, . . . , Pn, of which at most t < n/3 may be corrupt.
Our protocol Πavss1, see Figure 9, is an (n, d, L)-AVSS protocol over A (with respect to e). The
protocol requires t < d ≤ n− 2 · t.

Our AVSS protocol makes use of a variation of the probabilistic degree check from [DN07].
In addition to the ring A, the protocol works with a ring extension B of A; however, in some
instantiations of the protocol, we may well have A = B. Our protocol is also parameterized in
terms of a repetition parameter R; however, in some instantiations of the protocol, we may well
have R = 1.

A key ingredient in our AVSS protocol is a subprotocol for secure message distribution protocol
(see Section 3.4). Our AVSS protocol is described in terms of the corresponding ideal functionality
FSecMessDist.

Our protocol also uses a random beacon (see Section 3.1) whose output space is of the form
ΘR, where Θ ⊆ BL. In one instantiation of the protocol, we will use

Θ = ΘEpow := {(θ, θ2, . . . , θL) : θ ∈ E},

where E ⊆ B. In another instantiation, we will use

Θ = ΘElin := EL.

So the random beacon will output a collection of R sequences {θ(r)}r∈[R], where each θ(r) is ran-

domly chosen from Θ. The advantage of using Θ = ΘEpow is that the random beacon really only

needs to output a single elements θ ∈ E . The disadvantage of using Θ = ΘEpow is that the security
of our protocol is a bit weaker. Our AVSS protocol is described in terms of the corresponding ideal
functionality FBeacon parameterized by the output space ΘR.

Our protocol also makes use of a reliable broadcast protocol (see Section 3.2) and a simple
asynchronous agreement protocol (see Section 3.3). Our AVSS protocol is described in terms of the
corresponding ideal functionalities FReliableBroadcast and FAsyncAgreement.

5.1 Security analysis

In order to analyze the failure probability of this generic protocol, we need a definition.

Definition 5.1 (Inner product bound). With A, B, and Θ ⊆ BL as above, we define

χ(A,B, Θ)

to be the maximum, over all b ∈ B and nonzero a ∈ AL, of the probability that

b+ 〈a,θ〉 = 0,

where θ is chosen uniformly at random from Θ.

In a typical instantiation, one would choose E to be a maximum sized exceptional set in B so
that we can apply Schwarz-Zippel (Lemma 2.1). In this setting, we have: if Θ = ΘEpow, then

χ(A,B, Θ) ≤ L/|E|, and if Θ = Θlin = EL, then χ(A,B, Θ) = 1/|E|. Choosing a larger ring B
will allow one to increase the size of E , however this comes at the expense of increasing the size of
the elements which need to be transmitted.

21

Πavss1

The dealer D ∈ {P1, . . . , Pn} has input f1, . . . , fL ∈ A[x]<d.

1. Dealer D:
(a) Choose random g(r) ∈ B[x]<d for r ∈ [R].
(b) Compute evaluations

v`,j ← f`(ej) ∈ A (` ∈ [L], j ∈ [n])

and
w

(r)
j ← g(r)(ej) ∈ B (r ∈ [R], j ∈ [n]),

(c) Compute the messages

mj =
(
{v`,j}`∈[L], {w(r)

j }r∈[R]

)
, (1)

(d) Invoke the operation Input(distribute,m) on FSecMessDist, where m = (m1, . . . ,mn). Note: if the sender
is corrupt, some of these messages may be ⊥.

2. Each Pj :
(a) Wait for FSecMessDist to deliver the message Output(distribute,mj).
(b) Invoke the operation Input() on FBeacon.

3. Each Pj : Wait for FBeacon to deliver the message Output({θ(r)}r∈[R]). For each r ∈ [R], θ(r) is a random
element of Θ ⊆ BL, and we write

θ(r) = (θ
(r)
1 , . . . , θ

(r)
L).

4. Dealer D:
(a) Compute

h(r) ← g(r) +
∑
`∈[L]

θ
(r)
` · f` ∈ B[x]<d (for r ∈ [R])

(b) Invoke the operation Input({h(r)}r∈[R]) on FReliableBroadcast.
5. Each Pj :

(a) Wait for FReliableBroadcast to deliver the message Output({h(r)}r∈[R]).
(b) Check that mj 6= ⊥, and so is of the form (1), and that

h(r)(ej) = w
(r)
j +

∑
`∈[L]

θ
(r)
` · v`,j (for r ∈ [R]). (2)

If these checks pass, we say that Pj is happy, and set happyj ← true; otherwise, we say Pj is unhappy,
and set happyj ← false.

(c) Invoke the operation Input(happyj) on FAsyncAgreement.
6. Pj : Wait for FAsyncAgreement to deliver the message Output(done).

If Pj is happy, then output {v`,j}`∈[L], and also do the following:
(a) Wait to receive a valid complaint from some player Pi, which is a message mi securely forwarded

from Pi (see details below). Such a complaint is validated by checking that Pi is unhappy, meaning
that either mi = ⊥ or that equation (2), with j replaced by i, does not hold.

(b) If the complaint is valid then broadcast an assist, which is done by Pj invoking Input(forward, i, assist)
on FSecMessDist for all i ∈ [n].

Otherwise, Pj is unhappy and so we do the following.
(a) Broadcast a complaint. This is done by invoking Input(forward, i, complaint) on FSecMessDist for all

i ∈ [n].
(b) Now wait for t + 1 valid assists. An assist from Pi is a message mi securely forwarded by Pi (see

details above). Such an assist is validated by checking that Pi is happy, meaning that mi 6= ⊥ and
that equation (2), with j replaced by i, holds.

(c) Once t+1 valid assists are obtained, party Pj can interpolate to obtain and output his correct shares.

Fig. 9. An AVSS protocol over A

22

Theorem 5.1 (Security of Πavss1). Assuming 2n · χ(A,B, Θ)R is negligible, Πavss1 securely
and completely realizes Favss in the (FSecMessDist,FBeacon,FReliableBroadcast,FAsyncAgreement)-hybrid
model.

Proof. Completeness is clear. We focus on proving there is a simulator that interacts with Favss in
the ideal world such that no environment can effectively distinguish the ideal world from the hybrid
world.

If the dealer is honest, the proof reduces to showing that the values {h(r)}r∈[R] and {w(r)
j }r∈[R]

for j ∈ C do not leak any extra information. This is a standard argument, based on the “random
padding” supplied by the polynomials {g(r)}r∈[R]. In more detail, the ideal functionality Favss gives
the simulator the values v`,j for ` ∈ [L] and j ∈ C. For r ∈ [R], the simulator then chooses
h(r) ∈ B[x]<d at random, and then computes

w
(r)
j ← h(r)(ej)−

∑
`∈[L]

θ
(r)
` · v`,j (for j ∈ [C]).

Note that the simulator can also generate the random beacon values θ
(r)
` in advance of this com-

putation.
The more interesting case is that when the dealer is corrupt. The crux of the proof in this case is

showing that by the first point in time at which any honest party outputs its shares, the simulator
can effectively extract corresponding polynomials f1, . . . , fL ∈ F [x]<d. The proof is similar to the
analysis in [DN07]. The main difference is that, our protocol may terminate successfully if any
subset of n− 2 · t honest parties is happy, and this subset may be determined after is the random
beacon is revealed. A simple way to deal with this is to apply the union bound to the collection of
all subsets of parties, which is where the factor 2n in the theorem statement comes from.

In more detail, consider the inputs (m1, . . . ,mn) to FSecMesDist, where each mj is either ⊥ or of
the form (1), and which are committed before the random beacon is revealed. Here, we are using
the input extractability property of the secure message distribution protocol. We will generally
ignore indices j such that mj = ⊥.

Consider the later point in time that an honest party first passes the wait condition in Step 6.
At this point in time, we can define P∗ to be the set of indices j ∈ [n] for which Pj is happy,
as determined by the extracted input mj , the random beacon value, and the polynomials h(r).
This set includes all parties, both honest and dishonest. By the correctness property of the simple
asynchronous agreement protocol, we have |P∗ ∩H| ≥ n− 2 · t ≥ d.

For each ` ∈ [L], the simulator extracts D’s input polynomial f` as the unique polynomial of
degree less than |P∗| that interpolates through the points {(ej , v`,j)}j∈P∗ . The simulation fails iff
any of these polynomials has degree ≥ d. Indeed, if any of these polynomials has degree ≥ d, then
the simulation obviously fails. Conversely, if all of these polynomials have degree < d, then one
sees that the complaint mechanism works correctly: the honest parties hold enough good shares
to reconstruct the polynomials by themselves (since |P∗ ∩ H| ≥ d); moreover, the corrupt parties
cannot contribute bad shares during this process (which is why we include corrupt parties in the
definition of P∗).
Claim 1: the simulation fails with probability at most 2n · χ(A,B, Θ)R. To prove Claim 1, let us
first make a definition. Consider any point in time after the dealer has submitted its input vector
M = (m1, . . . ,mn) to FSecMessDist, so the messages mj for j ∈ [n] are fixed. Let P ⊆ [n] with
n′ := |P| ≥ d and mj 6= ⊥ for all j ∈ P. We say P is d-consistent if for each ` ∈ [L], the points
{(ej , v`,j)}j∈P lie on a polynomial over A of degree less than d.

23

Claim 2: if P is not d-consistent, then the probability that Pj is happy for all j ∈ P is at most
χ(A,B, Θ)R. To prove Claim 2, suppose P is not d-consistent. Consider the (n′, d)-Reed-Solomon
code over A with respect to the evaluation coordinates {ej}j∈P , and the corresponding check matrix
C ∈ An′×(n′−d). For ` ∈ [L], define the vector v` := {v`,j}j∈P ∈ An′ . The assumption that P is not
d-consistent means that for some `∗ ∈ [L], the vector v`∗ is not a codeword, which means v`∗ ·C 6= 0.
Define the matrix Q ∈ AL×n′ whose `-th row is v` for ` ∈ [L]. So we have Q · C ∈ AL×(n′−d) is

nonzero matrix. For each r ∈ [R], define w(r) := {w(r)
j }j∈P ∈ Bn′ . Consider the corresponding

(n′, d)-Reed-Solomon code over the extension ring B, which has the same check matrix C as our
original code (since the evaluation coordinates lie in A). Now, if Pj is happy for all j ∈ P, this

means that for all r ∈ [R], the vector w(r) +θ(r) ·Q lies in the extended Reed-Solomon code, which
implies

w(r) · C + θ(r) ·Q · C = 0. (3)

Since Q · C is a nonzero matrix, we can choose one nonzero column of Q · C, and (3) implies that
for some fixed b ∈ B and fixed, nonzero a ∈ AL, we have

b+ 〈a,θ(r)〉 = 0. (4)

So for each r ∈ [R], equation (4) holds with probability at most χ(A,B, Θ), and repeating this R
times gives the desired probability and proves Claim 2.

Returning to the proof of Claim 1: if the simulation fails, this implies that P∗ is not d-consistent
yet Pj is happy for all j ∈ P∗. Now, even though the inputs (1) are chosen before the random beacon
is revealed, the subset P∗ may be chosen by the adversary after the random beacon is revealed.
Claim 1 follows by applying the union bound to Claim 2. ut

The above theorem establishes the protocol securely realizes the Favss functionality. Complete-
ness is straightforward to establish from the completeness of the subprotocols.

Note that the factor 2n in the failure bound does not arise in the analysis of the corresponding
protocol in [DN07]. This seems hard to circumvent, as in the asynchronous setting, the adversary
can run the protocol with an arbitrarily chosen subset of happy honest parties. For modest sized
n (like n < 100), this should be acceptable, using a larger extension B, or larger value of R, as
necessary.

Note that we get a somewhat better failure bound when we use Θ = ΘElin. However, in this
instantiation, our random beacon has to output a vector (θ1, . . . , θL) ∈ EL. This could be imple-
mented by running a fast PRG on a seed obtained from a random beacon. However, to justify this
step, we have take account of the fact that the failure condition in Theorem 5.1, is based on the
union bound, is not efficiently verifiable. Indeed, the adversary gets to choose the subset needed to
break the protocol after seeing the seed, and there are exponentially many subsets to choose from.
We can still justify this step by implementing the PRG using a hash function that we model as a
random oracle. Indeed, this gives us an implementation of a random beacon with outputs in ΘElin
that securely realizes FBeacon in the random oracle model.

An example. Here is a simple example that shows why a factor of 2Ω(n) in the failure probability
seems hard to avoid.

Let n = 3 · t+ 1 and d = t+ 1. Suppose a corrupt dealer chooses polynomials f1 = xt+2 + xt+1

and f2 = xt+2. All other polynomials are of degree at most t. Now consider any set P ∈ [n] of size

24

t+ 2, and define

f
(P)
1 := f1 mod

∏
j∈P

(x− ej)

and
f
(P)
2 := f2 mod

∏
j∈P

(x− ej).

Then we have
f
(P)
1 = (1 + T (P)) · xt+1 + lower order terms

and
f
(P)
2 = T (P) · xt+1 + lower order terms,

where
T (P) := −

∑
j∈P

ei.

Assume Θ = Θpow. For a given θ, assuming θ 6= 0 and T (P) 6= 0, the adversary will break the
protocol if

(1 + T (P)) + θ · T (P) = 0

or in other words
θ = −(1 + 1/T (P)).

So to break the protocol, the adversary has to find a subset P ⊆ H of size t+ 2 that satisfies this
equation.

To really get an effective attack that succeeds with probability at least 2Ω(n)/|B|, we need that
the map P 7→ T (P) is nearly one-to-one and not too hard to invert. For example, if |A| > 2n and
the evaluation coordinates are 1, 2, . . . , 2n−1, then both of these conditions are true. However, if the
evaluating point are 1, 2, . . . , n, then this attack succeeds with probability only O(n2/|B|), since the
image if the map P 7→ T (P) is of size O(n2).

So even though this example has some limitations, it shows that getting a significantly better
failure bound may be very challenging if not impossible.

5.2 Communication Complexity

We now consider the communication complexity of Πavss1 Here, the communication complexity of
a protocol is defined to be the sum of the length of all messages sent by honest parties (to either
honest or corrupt parties) over the point-to-point channels.

We make a distinction between the “happy path” and the “unhappy path”. To enter the “un-
happy path”, a corrupt party must provably misbehave. In our protocol, this corresponds to the
situation where a party complains against a corrupt dealer. If this happens, all honest parties will
learn of this and can take action: in the short term, the honest parties can safely ignore this party,
and in the longer term, the corrupt party can be removed from the network. Also, such provable
misbehavior could lead to legal or financial jeopardy for the corrupt party, and this in itself may be
enough to discourage such behavior. Note that the “happy path” includes corrupt behavior, includ-
ing collusion among the corrupt parties, as well as behavior that is clearly corrupt as observed by
an individual honest party, but that cannot be used as reliable evidence to convince other honest
parties or an external authority of corrupt behavior.

25

For these reasons, we believe it makes sense to make a distinction between the complexity of
the protocol on the “happy path” versus the “unhappy path”.

We also make a couple of simplifying assumptions. Namely, we assume that B = A and that Θ =
ΘElin, where E is an exceptional set of maximal size. In this case, the failure bound in Theorem 5.1
becomes 2n/|E|R. We will want to set R so that this bound is negligible. This is discussed below.

The Happy Path. Each message mj input into the FSecMessDist has size

O ((L+R) · log|A|) .

Our protocol for secure message distribution, outlined in Section 4, has communication complexity
O(|m|+ λ · n2 · log n), and so its contribution to the total communication complexity is

O
(
n · (L+R) · log|A|+ λ · n2 · log n

)
.

The message input to FReliableBroadcast is of size O(n · R · log|A|). If we implement this using, say,
the protocol from [CT05], this contributes

O
(
n2 ·R · log|A|+ λ · n2 · log n

)
to the overall communication complexity. We may implement FAyncAgreement as in Section 3.3, which
contributes O(n2) to the communication complexity. We shall ignore for now the communication
complexity of the random beacon functionality. Thus the total communication complexity, ignoring
the random beacon, is

O
(
n · (L+ nR) · log|A|+ λ · n2 · log n

)
. (5)

If we want σ bits of security, we should select R as

R =
⌈ σ + n

log2|E|

⌉
. (6)

With this setting of R, our communication complexity bound (5) becomes

O

(
n · L · log|A|+ n2 · (σ + n) · log|A|

log|E|
+ λ · n2 · log n

)
. (7)

Finite Field Case. Suppose A is a field extension of degree δ over the finite field S = Fq. In this
case, E = A and |A| = |S|δ; therefore, (7) simplifies to

O
(
n · L · δ · log|S|+ n3 + n2 · σ + λ · n2 · log n

)
,

and if max{n, σ} ≤ λ, this simplifies even further to

O
(
n · L · δ · log|S|+ λ · n2 · log n

)
.

While we have ignored the communication complexity of the random beacon, we may assume it is
bounded by a polynomial in n and λ. Therefore, for sufficiently large L (polynomial in n, σ, and
λ) the amortized communication complexity per sharing is

O(n · δ · log|S|).

26

Suppose that our AVSS protocol is used in an application where the secrets lie in the field S = Fq,
where q ≤ n. In this case, as discussed in Section 2.4, we will have to run our protocol over a field A
of degree δ over S, where δ = dlogq(n+ 1)e. In this case, the amortized communication complexity
per sharing is

O(n · logq n · log|S|),

which is
O(n · log n).

Galois Ring Case. Suppose A is a Galois ring of degree δ over the ring S = Z/(pk). In this case,
|A| = |S|δ = pk·δ but |E| = pδ, and (7) simplifies to

O
(
n · L · δ · log|S|+ n2 · (σ + n) · k + λ · n2 · log n

)
.

Therefore, for sufficiently large L (polynomial in n, σ, λ, and k) the amortized communication
complexity per sharing is

O(n · δ · log|S|).

Suppose that our AVSS protocol is used in an application where the secrets lie in the ring
S = Z/(pk), where p ≤ n. In this case, as discussed in Section 2.4, we will have to run our protocol
over a Galois ring A of degree δ over S, where δ = dlogp(n + 1)e. In this case, the amortized
communication complexity per sharing is

O(n · logp n · log|S|),

which is
O(n · log n · k).

The Unhappy Path. For the “unhappy path”, the communication complexity of the secure
message distribution protocol may blow up by a factor of n. So in this case, the bound (5) becomes

O
(
n2 · (L+R) · log|A|+ λ · n3 · log n

)
,

and choosing R as in (6), the bound (7) becomes

O

(
n2 · L · log|A|+ n2 · (σ + n) · log|A|

log|E|
+ λ · n3 · log n

)
.

Thus, all of our estimates above for amortized communication complexity per sharing get blown
up by a factor of n.

5.3 Using a Random Oracle instead of a Random Beacon

We can simplify the protocol significantly by using a random oracle in place of a random beacon. In
more detail, suppose that hash function used to implement the secure message distribution protocol
is modeled as a random oracle. This includes the Merkle trees and as well as the use in the linear
hiding assumption in Section 4.3. Intuitively, this makes the root of the top-level Merkle tree in
the secure message distribution protocol an extractable commitment. We can also apply another

27

random oracle to this root to obtain the output of the random beacon. With this approach, the
adversary must commit to the secure message distribution inputs before seeing the random oracle
output, but he can “grind”, trying several sets of inputs until he finds an input/beacon pair that
he likes.

To formalize this, we can define an ideal functionality F∗SecMessDist that combines that of secure
message distribution and a random beacon. This is the same FSecMessDist, except as follows:

– As soon as a sender inputs m, the functionality gives a random beacon value ω ∈ Ω to the
ideal-world adversary.

– The outputs to the parties in the distribution phase include the value ω ∈ Ω.
– If the sender is corrupt, the ideal-world adversary may alternatively specify the sender’s input

via a special grinding interface:
• Before specifying an input, the ideal-world adversary may make several calls to the grinding

interface of F∗SecMessDist.
• In each such grinding call, the ideal-world adversary specifies an input m, to which
F∗SecMessDist responds with a corresponding random beacon value ω ∈ Ω.
• After making several such calls, the adversary may fix the sender’s input by identifying one

of the grinding calls, so that the protocol runs with the values m and ω from that call.

It is not hard to see that our protocol for secure message distribution securely realizes
F∗SecMessDist. Moreover, the total number of grinding calls made by the simulator in the ideal world
is bounded by the total number of calls to the random oracle used to implement the random beacon.

Note that in a system in which many instances of our AVSS protocol may run using the same
hash function, it is essential that appropriate (and standard) “domain separation” techniques be
used to ensure that each instance is effectively getting its own independent random oracles.

Let is call this variation Πavss2. It is the same as Πavss1, except that we use this combined
secure message distribution plus random beacon subprotocol, which securely and completely realizes
F∗SecMessDist in the random oracle model. It is easy to adapt the proof of Theorem 5.1 to prove:

Theorem 5.2 (Security of Πavss2). Assuming and Q · 2n · χ(A,B, Θ)R is negligible, where
Q is the number of grinding calls, Πavss2 securely and completely realizes Favss in the
(F∗SecMessDist,FReliableBroadcast)-hybrid model. (F∗SecMessDist,FReliableBroadcast,FAsyncAgreement)-hybrid
model.

All of the issues and results discussed above, including the discussion on communication com-
plexity, carry over here as well. We also hypothesize that Πavss2 can be implemented in such a way
that it is secure against adaptive corruptions in the random oracle model — we expect a proof of
this to be straightforward.

6 Restricting the secrets to a subring

We assume here that a secret is encoded, as usual, as the constant term of a polynomial. As
discussed in Section 2.4, our AVSS protocol may be used in an application where the secrets lie in
a ring S that does not contain the appropriate evaluation coordinates, and we are forced to run our
AVSS protocol in an extension ring A that does contain such coordinates. In this section, we give
an AVSS protocol that enforces the restriction that the shared secret in fact lies in S. Our protocol
works when S and A are Galois rings, and does secret sharing over a related ring A′. Our AVSS

28

protocol that enforces this restriction makes use of a subprotocol for secret sharing over A′. Our
technique for ensuring inputs lie in S makes use of the checking technique of extending the p-adic
precision one works with, which was first introduced in [CDE+18].

6.1 Auxiliary rings

We begin by describing the relationship between the various rings involved. Let G(z) ∈ Z[z] be a
monic polynomial of degree ε ≥ 1. Let F (y, z) ∈ Z[y, z] be a bivariate polynomial of the form

F (y, z) = F0(z) + F1(z) · y + · · ·+ Fδ−1(z) · yδ−1 + yδ,

where δ ≥ 1. For each m ≥ 1, define the rings

S(m) := Z[z]/(pm, G(z)) and A(m) := Z[y, z]/(pm, G(z), F (y, z)).

We naturally view Z/(pm) ⊆ S(m) ⊆ A(m) as a tower of ring extensions, where S(m) has degree
ε over Z/(pm) and A(m) has degree δ over S(m). Indeed, every element of A(m) can be expressed
uniquely as the image of a polynomial in Z[y, z] of the form A0(z) +A1(z) · y+ · · ·+Aδ−1(z) · yδ−1,
where for i = 0, . . . , δ− 1, we have degAi < ε, and each coefficient of Ai lies in the interval [0, pm).
The ring S(m) corresponds to the subset of such polynomials of degree at most 0 in y. The ring
Z/(pm) corresponds to the subset of such polynomials of degree at most 0 in y and z.

We shall require that S(1) and A(1) are fields. This requirement ensures that S(m) and A(m) are
Galois rings. Note that for m′ ≥ m, there is a natural map from A(m′) to A(m), and the restriction
of this map to S(m′) is the natural map from S(m′) to S(m). The units in A(m) are the elements
whose images in A(1) are nonzero (this follows from Hensel lifting).

We fix a sequence polynomials E1, . . . , En ∈ Z[y, z] whose images in A(1) form an exceptional se-
quence. Note that for every m ≥ 1, the images of these polynomials in A(m) also form an exceptional
sequence in A(m).

Now fix an integer k ≥ 1 and define

S := S(k) and A := A(k).

Let e1, . . . , en ∈ A be the images of E1, . . . , En in A. Our ring of secrets will be S. Our goal is to
design a secret sharing protocol that can be used to share of a secret in S, where the evaluation
coordinates are e1, . . . , en, and so the shares lie in A even though the secret lies in S. Such a protocol
should provide all the usual guarantees of any secret sharing protocol, but should also enforce the
restriction that the shared secret is in S, even if the dealer is corrupt.

To do this, we will actually perform a secret sharing over another ring. Fix an integer k′ ≥ k
and define

S′ := S(k
′) and A′ := A(k′).

Let e′1, . . . , e
′
n ∈ A′ be the images of E1, . . . , En in A′. Let φ be the natural map from A′ to A.

Observe that S′ is a subring of φ−1(S). The idea is that we will do the following steps:

1. Perform a sharing of a secret in S′ with shares in A′, with respect to the evaluation coordinates
e′1, . . . , e

′
n.

2. Perform a probabilistic check that ensures that the secret lies in φ−1(S) with high probability.

29

After this, each party can locally apply φ to its share to get a sharing of a secret in S with shares
in A, with respect to the evaluation coordinates e1, . . . , en.

On the one hand, if the dealer is honest, in order to protect the privacy of the dealer’s secret,
it is essential that their secret s′ lies in S′. Of course, an honest dealer should really be starting out
with a secret in s ∈ S and then choose s′ ∈ S′ as some (arbitrary) preimage of s under φ. On the
other hand, if the dealer is corrupt, the protocol does not enforce the constraint that the dealer’s
secret lies in S′, but only that it lies in φ−1(S). In either case, after each party locally applies φ to
its share, we end up with a sharing of a secret in S.

6.2 Two special cases

We briefly sketch how the above general setting includes two important special cases.

S is a non-prime finite field: This corresponds to the setting where k = 1 and ε > 1. In this
case, S = Z[z]/(p,G(z)) is a finite field of cardinality q = pε, and A = Z[y, z]/(p,G(z), F (y, z))
is an extension field of degree over δ over Fq (and so has qδ = pε·δ elements). We also have
corresponding rings S′ = Z[z]/(pk

′
, G(z)) and A′ = Z[y, z]/(pk

′
, G(z), F (y, z)). Note that even

though S and A are fields, S′ and A′ will not be (assuming k′ > 1).
S is of the form Z/(pk): This corresponds to setting G(z) := z, and using a polynomial of the

form F (y) ∈ Z[y] in the role of F (y, z). Then S = Z/(pk) and A = Z[y]/(pk, F (y)). We also have
corresponding rings S′ = Z/(pk′) and A′ = Z[y]/(pk

′
, F (y)).

6.3 The protocol

The basic idea is this. The dealer has polynomials f1, . . . , fL ∈ A′[x]<d, where for each ` ∈ [L],
the corresponding secret is the constant term f`(0), which lies in S′. The dealer chooses a random
g ∈ A′[x]<d with g(0) ∈ S′, and then runs an AVSS protocol on the polynomials f1, . . . , fL, g. After
this, a random beacon is used to generate a random vector

γ := (γ1, . . . , γL) ∈ (Z/(pk
′
))L.

The dealer then computes the polynomial

h← g +
∑
`∈[L]

γ` · f`, (8)

which is also a polynomial in A′[x]<d with h(0) ∈ S′, and reliably broadcasts h. After receiving the
polynomial h and verifying that it is of the correct form (i.e., of the right degree and with constant
term in S′), each party Pj verifies that h is locally correct based on its shares by checking that
(8) holds at the evaluation coordinate e′j . The parties then run a very simple agreement protocol
that will ensure that they only output their shares if at least n − 2t ≥ d parties have successfully
performed this local check. This ensures that each h was computed correctly. We then argue that
if f`∗(0) /∈ φ−1(S) for some `∗ ∈ [L], then with probability at most pk−k

′−1, for randomly chosen γ,
we have

g +
∑
`∈[L]

γ` · f` ∈ S′.

This implies that except with probability pk−k
′−1, we can be sure that all ` ∈ [L], the secret f`(0)

lies in φ−1(S).

30

Our protocol, which we call Πravss1, is presented in Figure 10. It makes use of a repetition
parameter R, so that the above probabilistic check is actually performed R times. It makes use of
an (n, d, L+R)-AVSS subprotocol over A′ with respect to (e′1, . . . , e

′
n). In the description of Πravss1,

we invoke this as an ideal functionality Favss. Protocol Πravss1 also makes use of

– A random beacon that returns for each r ∈ [R] a random vector γ(r) := (γ
(r)
1 , . . . , γ

(r)
L) ∈

(Z/(pk′))L, which is invoked as an ideal functionality FBeacon;
– A reliable broadcast subprotocol, which is invoked as an ideal functionality FReliableBroadcast.

As we shall argue below, when the protocol produces an output, the shared secrets must line in
φ−1(S) (with high probability). As mentioned above, each party can then locally apply φ to its
shares to get sharings of secrets in S.

Πravss1

The dealer D ∈ {P1, . . . , Pn} has input f1, . . . , fL ∈ A′[x]<d with constant terms in S′.

1. Dealer D:
(a) For each r ∈ [R], choose a random polynomial g(r) ∈ A′[x]<d with constant term in S′.
(b) Invoke the operation Input({f`}`∈[L], {g(r)}r∈[R]) on Favss.

2. Each Pj :

(a) Wait for Favss to deliver the message Output({v`,j}`∈[L], {w(r)
j }r∈[R]).

(b) Invoke the operation Input() on FBeacon.

3. Each Pj : Wait for FBeacon to deliver the message Output({γ(r)}r∈[R]), where γ(r) = (γ
(r)
1 , . . . , γ

(r)
L) ∈

(Z/(pk
′
))L.

4. Dealer D:
(a) For each r ∈ [R], compute

h(r) ← g(r) +
∑
`∈[L]

γ
(r)
` · f`.

(b) Invoke the operation Input({h(r)}r∈[R]) on FReliableBroadcast.
5. Each Pj :

(a) Wait for FReliableBroadcast to deliver the message Output({h(r)}r∈[R]).

(b) For each r ∈ [R], check that h(r) ∈ A′[x]<d with constant term in S′, and that

h(r)(e′j) = w
(r)
j +

∑
`∈[L]

γ
(r)
` · v`,j .

If these checks do not pass then abort. Otherwise:
i. Send a “vote” message to all parties;

ii. Wait for “vote” messages from n− t distinct parties;
iii. Output {v`,j}`∈[L].

Fig. 10. AVSS protocol for a dealer to provably enter values in φ−1(S)

6.4 Security analysis

The fact that Πravss1 provides completeness follows from the completeness of its subprotocols. We
shall show that assuming pk−k

′−1 is negligible, Πravss1 securely realizes the ideal functionality Fravss

given in Figure 11. To do this, we employ the following simple lemma.

31

Lemma 6.1. Let p be a prime and let s be a positive integer. Let a1, . . . , aL be integers, not all
zero mod ps. Let r be the largest positive integer such that pr divides a` for ` ∈ [L], so that r < s.
Let b be an arbitrary integer. Let N be the number of integers x1, . . . , xL in the range [0, ps) that
satisfy

a1 · x1 + · · · aL · xL + b ≡ 0 (mod ps). (9)

Then N/pL·s ≤ pr−s.

Proof. Without loss of generality, assume that pr | a1 but pr+1 - a1. We may assume pr | b, as
otherwise (9) has no solutions. In this case, (9) holds iff

(a1/p
r) · x1 + · · · (aL/pr) · xL + (b/pr) ≡ 0 (mod ps−r).

Moreover, since a1/p
r is not divisible by p, for every choice of x2, . . . , xL, there is a unique choice

of x1 mod ps−r, and so pr choices for x1 in the interval [0, ps). The lemma follows.

This lemma says that if x1, . . . , xL are randomly chosen from the interval [0, ps), then the
probability that (9) holds is at most pr−s.

Fravss

Input(f1, . . . , fL): this operation is invoked once by the dealer D, who inputs polynomials f1, . . . , fL ∈ A′[x]<d

S′ to Fravss.
If D is honest, the constant terms are required to lie in S′; however, if D corrupt, the constant terms are
only required to lie in φ−1(S).
In response, Fravss sends the message NotifyInput() to the ideal-world adversary.

RequestOutput(j): after the input has been received, this operation may be invoked by the ideal-world
adversary, who specifies j ∈ [n]. In response, Fravss sends to Pj the message

Output
({

f`(e
′
j)
}
`∈[L]

)
.

Fig. 11. The restricted AVSS Ideal Functionality (parameterized by n, d, L, R, D, p, k, k′, F , G, (E1, . . . , En), which
define S, A, S′, A′, φ, and e′1, . . . , e

′
n)

Theorem 6.1 (Security of Πravss1). Assuming p(k−k
′−1)·R is negligible, Πravss1 securely and com-

pletely realizes Fravss in the (Favss,FBeacon,FReliableBroadcast)-hybrid model.

Proof. For completeness, suppose that some honest party has produced an output and all relevant
RequestOutput messages have been delivered. The honest party that produced an output received
n− t “vote” messages, which means that at least n− 2t ≥ d honest parties successfully performed
their local checks. This implies that each h(r) has the correct form (is of degree less than d with
constant term in S′), and that

h(r) = g(r) +
∑
`∈[L]

γ
(r)
` · f` (for all r ∈ [r]). (10)

But this implies that all honest parties have successfully performed their local checks and broadcast
“vote” messages, and so every honest party has produced an output.

32

We now prove that there is a simulator that interacts with Fravss in the ideal world such that
no environment can effectively distinguish the ideal world from the hybrid world.

If the dealer is honest, the proof reduces to showing that the values h(r) and w
(r)
j for j ∈ C and

r ∈ [R] do not leak any extra information. This is a standard argument, based on the “random
padding” supplied by the polynomials g(r). In more detail, the ideal functionality Fravss gives the
simulator the values v`,j for ` ∈ [L] and j ∈ C. For each r ∈ [r], the simulator then chooses
h(r) ∈ A′[x]<d with constant term in S′ at random and then computes

w
(r)
j ← h(r)(e′j)−

∑
`∈[L]

γ` · v`,j (for j ∈ [C]).

Note that the simulator can also generate the random beacon values γ
(r)
` in advance of this com-

putation.
Now consider case is that when the dealer is corrupt. The dealer must submit polynomi-

als {f`}`∈[L] and {g(r)}r∈[R] of degree less than d to Favss before the random beacon values

{(γ(r)1 , . . . , γ
(r)
L)}r∈[R] are revealed. Let s` denote the constant term of f` for ` ∈ [L] and let s(r)

denote the constant term of g(r) for r ∈ [R]. Suppose that s`∗ /∈ φ−1(S) for some `∗ ∈ [L]. To finish

the proof of the theorem, it will suffice to show that for randomly chosen {(γ(r)1 , . . . , γ
(r)
L)}r∈[R], the

probability that any honest party produces an output is at most p(k−k
′−1)·R.

First observe that if any honest party produces an output, then as already discussed above,
each h(r) has the correct form and (10) holds. This implies that

s(r) +
∑
`∈[L]

γ
(r)
` · s` ∈ S′ (for all r ∈ [R]). (11)

So it suffices to show that (11) holds with probability at most p(k−k
′−1)·R.

For ` ∈ [L], we can express s` uniquely as the image in A′ of a polynomial in Z[y, z] of the form

δ−1∑
i=0

ε−1∑
j=0

ai,j,` · yi · zj ,

where each ai,j,` is an integer in the range [0, pk
′
). The assumption that s`∗ /∈ φ−1(S) means that

for some i∗ ≥ 1 and j∗ ≥ 0, we have ai∗,j∗,`∗ 6≡ 0 (mod pk). For r ∈ [R], we can similar express s(r)

uniquely as the image in A′ of a polynomial in Z[y, z] of the form

δ−1∑
i=0

ε−1∑
j=0

bi,j · yi · zj ,

For ` ∈ [L] and r ∈ [R], we can view each γ
(r)
` as the image in Z/(pk′) of a randomly chosen integer

x
(r)
` in the range [0, pk

′
). But then by (11), we must have

bi∗,j∗ +
∑
`∈[L]

ai∗,j∗,` · x
(r)
` ≡ 0 (mod pk

′
) (for all r ∈ [R]). (12)

But by Lemma 6.1, the congruence (12) holds with probability at most p(k−k
′−1)·R.

After the proof of Theorem 5.1, we remarked that in some instantiations, we cannot justifiably
use a random beacon that generates a short seed that is then stretched using a PRG. That limitation
does not apply here.

33

6.5 Communication complexity

We calculate the communication complexity of this protocol. We assume the AVSS protocol in
Section 5 protocol is used for sharing over A′ and we consider the amortized complexity on the
“happy path” — but we could use any AVSS protocol that achieves linear amortized communication
complexity of the “happy path”. In this setting, the communication complexity (amortized, “happy
path”) is

O(n · log|A′|).

The settings of the parameters R and k′ affect both the communication complexity and the
failure bound.

Setting k′ := k. At one extreme, we could set k′ := k. In this case, to achieve σ bits of security, we
need to set the repetition parameter R := dσ · logp 2e. The main advantage of this parameter setting
is that A′ = A, and the amortized communication complexity remains the same as in Section 5.2.
The main disadvantage of this setting is that the amortized computational complexity blows up by
a factor of R.

Setting R := 1. At another extreme, we could set R := 1. In this case, to achieve σ bits of
security, we need to set k′ := k − 1 + dσ · logp 2e. Assuming S has degree ε over Z/(pk) and A has
degree δ over S the complexity (amortized, “happy path”) is

O(n · δ · (log|S|+ ε · σ)).

Finite Field Case. Suppose A is a field extension of degree δ over the finite field S = Fq, where
q = pε, δ = O(logq n), and k = 1. Then the communication complexity (amortized, “happy path”)
is

O(n · logq n · (log|S|+ ε · σ)),

which is
O(n · log n · (1 + σ/ log p)).

Galois Ring Case. Suppose S = Z/(pk) and A is of degree δ = O(logp n) over S, so ε = 1. Then the
communication complexity (amortized, “happy path”) is

O(n · logp n · (log|S|+ σ)),

which is
O(n · log n · (k + σ/ log p)).

As a special case, suppose p = 2 and k is large enough so that 2−k is negligible. Then by setting
k′ := 2 ·k, we get k+1 bits of security, while both the amortized communication and computational
complexity increase by just a small constant factor over the basic AVSS protocol.

6.6 Using a Random Oracle instead of a Random Beacon

Analogous to what we did in Section 5.3, we can simplify the protocol significantly by using a
random oracle in place of a random beacon.

34

Defining F∗avss. In more detail, let us start by defining an ideal functionality F∗avss that combines
that of AVSS and a random beacon. This is the same Favss, except as follows:

– As soon as a dealer inputs (f1, . . . , fL), the functionality gives a random beacon value ω ∈ Ω
to the ideal-world adversary.

– The outputs to the parties include the value ω ∈ Ω.

– If the dealer is corrupt, the ideal-world adversary may alternatively specify the dealer’s input
via a special grinding interface:

• Before specifying an input, the ideal-world adversary may make several calls to the grinding
interface of F∗avss.
• In each such grinding call, the ideal-world adversary specifies an input (f1, . . . , fL), to which
F∗avss responds with a corresponding random beacon value ω ∈ Ω.

• After making several such calls, the adversary may fix the dealer’s input by identifying one
of the grinding calls, so that the protocol runs with the values (f1, . . . , fL) and ω from that
call.

The relationship between Favss and F∗avss is analogous to that between FSecMessDist and F∗SecMessDist

in Section 5.3.

Implementing F∗avss. To securely realize F∗avss, we can modify our protocol Πavss2 in Section 5.3.
Recall that Πavss2 uses F∗SecMessDist to generate a random beacon value after the inputs m =
(m1, . . . ,mn) to the secure message distribution protocol are fixed. We can extend the output space
of this random beacon to include a sufficiently long random string ρ. Also recall that in Π∗avss2 (just
like in Πavss2), the dealer reliably broadcasts h = {h(r)}r∈[R]. Observe that the values m and h
together completely determine the effective inputs (f1, . . . , fL) to the AVSS ideal functionality.8

Therefore, we modify Πavss2 so that it generates its own random beacon output by feeding ρ and
h to a random oracle.

Let us denote by Π∗avss2 this modified version of Π∗avss2. It is not hard to see that Π∗avss2 securely
and completely realizes F∗avss, the total number of grinding calls made by the simulator in the ideal
world is bounded by the total number of calls to the random oracle used to implement the random
beacon.

Using F∗avss to implement Πravss2. We can now modify protocol Πravss1 to using F∗avss in place of
Favss and a random beacon. Let is call this new protocol Πravss2. It is easy to adapt the proof of
Theorem 6.1 to prove:

Theorem 6.2 (Security of Πravss2). Assuming Q·p(k−k′−1)·R is negligible, where Q is the number
of grinding calls, Πravss2 securely and completely realizes Fravss in the (F∗avss,FReliableBroadcast)-
hybrid model.

8 In fact, the effective inputs (f1, . . . , fL) are not really determined at all until h is fixed. Indeed, a corrupt dealer
could distribute arbitrary shares to the parties that are completely uncorrelated and do not lie on any particular
low-degree polynomial. Only after the random beacon value is revealed, the dealer can choose an arbitrary subset
of d honest parties to make happy and then choose h to make them so. The shares of these happy parties determine
the polynomials (f1, . . . , fL). After this, these d honest parties together with t corrupt parties can make the protocol
successfully produce an output, without the help of the unhappy parties. Later, the unhappy parties may complain
and obtain their shares from the happy parties.

35

Acknowledgements

The work of the second author was supported by CyberSecurity Research Flanders with reference
number VR20192203, by the FWO under an Odysseus project GOH9718N.

The second author would like to thank Jesper Buus Nielsen and Robin Jadoul for some discus-
sions on various related topics whilst the work in this paper was being carried out.

References

ACD+19. M. Abspoel, R. Cramer, I. Damg̊ard, D. Escudero, and C. Yuan. Efficient information-theoretic secure
multiparty computation over Z/pkZ via galois rings. In D. Hofheinz and A. Rosen, editors, TCC 2019:
17th Theory of Cryptography Conference, Part I, volume 11891 of Lecture Notes in Computer Science,
pages 471–501, Nuremberg, Germany, Dec. 1–5, 2019. Springer, Heidelberg, Germany.

ACD+20. M. Abspoel, R. Cramer, I. Damg̊ard, D. Escudero, M. Rambaud, C. Xing, and C. Yuan. Asymptotically
good multiplicative LSSS over Galois rings and applications to MPC over Z/pkZ. In S. Moriai and H. Wang,
editors, Advances in Cryptology – ASIACRYPT 2020, Part III, volume 12493 of Lecture Notes in Computer
Science, pages 151–180, Daejeon, South Korea, Dec. 7–11, 2020. Springer, Heidelberg, Germany.

AJM+22. I. Abraham, P. Jovanovic, M. Maller, S. Meiklejohn, and G. Stern. Bingo: Adaptively secure packed
asynchronous verifiable secret sharing and asynchronous distributed key generation. Cryptology ePrint
Archive, Report 2022/1759, 2022. https://eprint.iacr.org/2022/1759.

BCG93. M. Ben-Or, R. Canetti, and O. Goldreich. Asynchronous secure computation. In 25th Annual ACM
Symposium on Theory of Computing, pages 52–61, San Diego, CA, USA, May 16–18, 1993. ACM Press.

BGR98. M. Bellare, J. A. Garay, and T. Rabin. Batch verification with applications to cryptography and checking.
In C. L. Lucchesi and A. V. Moura, editors, LATIN 1998: Theoretical Informatics, 3rd Latin American
Symposium, volume 1380 of Lecture Notes in Computer Science, pages 170–191, Campinas, Brazil, Apr. 20–
24, 1998. Springer, Heidelberg, Germany.

BLS01. D. Boneh, B. Lynn, and H. Shacham. Short signatures from the Weil pairing. In C. Boyd, editor, Advances
in Cryptology – ASIACRYPT 2001, volume 2248 of Lecture Notes in Computer Science, pages 514–532,
Gold Coast, Australia, Dec. 9–13, 2001. Springer, Heidelberg, Germany.

BLW08. D. Bogdanov, S. Laur, and J. Willemson. Sharemind: A framework for fast privacy-preserving compu-
tations. In S. Jajodia and J. López, editors, ESORICS 2008: 13th European Symposium on Research in
Computer Security, volume 5283 of Lecture Notes in Computer Science, pages 192–206, Málaga, Spain,
Oct. 6–8, 2008. Springer, Heidelberg, Germany.

Bol03. A. Boldyreva. Threshold signatures, multisignatures and blind signatures based on the gap-Diffie-Hellman-
group signature scheme. In Y. Desmedt, editor, PKC 2003: 6th International Workshop on Theory and
Practice in Public Key Cryptography, volume 2567 of Lecture Notes in Computer Science, pages 31–46,
Miami, FL, USA, Jan. 6–8, 2003. Springer, Heidelberg, Germany.

BR93. M. Bellare and P. Rogaway. Random oracles are practical: A paradigm for designing efficient protocols. In
D. E. Denning, R. Pyle, R. Ganesan, R. S. Sandhu, and V. Ashby, editors, ACM CCS 93: 1st Conference
on Computer and Communications Security, pages 62–73, Fairfax, Virginia, USA, Nov. 3–5, 1993. ACM
Press.

Bra87. G. Bracha. Asynchronous byzantine agreement protocols. Inf. Comput., 75(2):130–143, 1987.
BTH06. Z. Beerliová-Trub́ıniová and M. Hirt. Efficient multi-party computation with dispute control. In S. Halevi

and T. Rabin, editors, TCC 2006: 3rd Theory of Cryptography Conference, volume 3876 of Lecture Notes in
Computer Science, pages 305–328, New York, NY, USA, Mar. 4–7, 2006. Springer, Heidelberg, Germany.

BTH08. Z. Beerliová-Trub́ıniová and M. Hirt. Perfectly-secure MPC with linear communication complexity. In
R. Canetti, editor, TCC 2008: 5th Theory of Cryptography Conference, volume 4948 of Lecture Notes
in Computer Science, pages 213–230, San Francisco, CA, USA, Mar. 19–21, 2008. Springer, Heidelberg,
Germany.

Can00. R. Canetti. Universally composable security: A new paradigm for cryptographic protocols. Cryptology
ePrint Archive, Report 2000/067, 2000. https://eprint.iacr.org/2000/067.

CDE+18. R. Cramer, I. Damg̊ard, D. Escudero, P. Scholl, and C. Xing. SPD Z2k : Efficient MPC mod 2k for
dishonest majority. In H. Shacham and A. Boldyreva, editors, Advances in Cryptology – CRYPTO 2018,
Part II, volume 10992 of Lecture Notes in Computer Science, pages 769–798, Santa Barbara, CA, USA,
Aug. 19–23, 2018. Springer, Heidelberg, Germany.

36

https://eprint.iacr.org/2022/1759
https://eprint.iacr.org/2000/067

CKL21. J. H. Cheon, D. Kim, and K. Lee. MHz2k: MPC from HE over Z2k with new packing, simpler reshare,
and better ZKP. In T. Malkin and C. Peikert, editors, Advances in Cryptology – CRYPTO 2021, Part II,
volume 12826 of Lecture Notes in Computer Science, pages 426–456, Virtual Event, Aug. 16–20, 2021.
Springer, Heidelberg, Germany.

Coh16. R. Cohen. Asynchronous secure multiparty computation in constant time. In C.-M. Cheng, K.-M. Chung,
G. Persiano, and B.-Y. Yang, editors, PKC 2016: 19th International Conference on Theory and Practice
of Public Key Cryptography, Part II, volume 9615 of Lecture Notes in Computer Science, pages 183–207,
Taipei, Taiwan, Mar. 6–9, 2016. Springer, Heidelberg, Germany.

CP17. A. Choudhury and A. Patra. An efficient framework for unconditionally secure multiparty computation.
IEEE Trans. Inf. Theory, 63(1):428–468, 2017.

CP23. A. Choudhury and A. Patra. On the communication efficiency of statistically-secure asynchronous MPC
with optimal resilience. Journal of Cryptology, 36:13, 2023.

CT05. C. Cachin and S. Tessaro. Asynchronous verifiable information dispersal. In P. Fraigniaud, editor, Dis-
tributed Computing, 19th International Conference, DISC 2005, Cracow, Poland, September 26-29, 2005,
Proceedings, volume 3724 of Lecture Notes in Computer Science, pages 503–504. Springer, 2005.

DN07. I. Damg̊ard and J. B. Nielsen. Scalable and unconditionally secure multiparty computation. In A. Menezes,
editor, Advances in Cryptology – CRYPTO 2007, volume 4622 of Lecture Notes in Computer Science, pages
572–590, Santa Barbara, CA, USA, Aug. 19–23, 2007. Springer, Heidelberg, Germany.

DXR21. S. Das, Z. Xiang, and L. Ren. Asynchronous data dissemination and its applications. Cryptology ePrint
Archive, Report 2021/777, 2021. https://eprint.iacr.org/2021/777.

DXR22. S. Das, Z. Xiang, and L. Ren. Balanced quadratic reliable broadcast and improved asynchronous verifiable
information dispersal. Cryptology ePrint Archive, Report 2022/052, 2022. https://eprint.iacr.org/

2022/052.
EXY22. D. Escudero, C. Xing, and C. Yuan. More efficient dishonest majority secure computation over Z2k via

galois rings. In Y. Dodis and T. Shrimpton, editors, Advances in Cryptology – CRYPTO 2022, Part I,
volume 13507 of Lecture Notes in Computer Science, pages 383–412, Santa Barbara, CA, USA, Aug. 15–18,
2022. Springer, Heidelberg, Germany.

Feh98. S. Fehr. Span programs over rings and how to share a secret from a module, 1998. MSc Thesis, ETH
Zurich.

FY92. M. K. Franklin and M. Yung. Communication complexity of secure computation (extended abstract). In
24th Annual ACM Symposium on Theory of Computing, pages 699–710, Victoria, BC, Canada, May 4–6,
1992. ACM Press.

GS22. J. Groth and V. Shoup. Design and analysis of a distributed ECDSA signing service. Cryptology ePrint
Archive, Report 2022/506, 2022. https://eprint.iacr.org/2022/506.

HNP08. M. Hirt, J. B. Nielsen, and B. Przydatek. Asynchronous multi-party computation with quadratic commu-
nication. In L. Aceto, I. Damg̊ard, L. A. Goldberg, M. M. Halldórsson, A. Ingólfsdóttir, and I. Walukiewicz,
editors, ICALP 2008: 35th International Colloquium on Automata, Languages and Programming, Part II,
volume 5126 of Lecture Notes in Computer Science, pages 473–485, Reykjavik, Iceland, July 7–11, 2008.
Springer, Heidelberg, Germany.

JSL22. R. Jadoul, N. P. Smart, and B. V. Leeuwen. MPC for Q2 access structures over rings and fields. In
R. AlTawy and A. Hülsing, editors, SAC 2021: 28th Annual International Workshop on Selected Areas
in Cryptography, volume 13203 of Lecture Notes in Computer Science, pages 131–151, Virtual Event,
Sept. 29 – Oct. 1, 2022. Springer, Heidelberg, Germany.

KMTZ13. J. Katz, U. Maurer, B. Tackmann, and V. Zikas. Universally composable synchronous computation. In
A. Sahai, editor, TCC 2013: 10th Theory of Cryptography Conference, volume 7785 of Lecture Notes in
Computer Science, pages 477–498, Tokyo, Japan, Mar. 3–6, 2013. Springer, Heidelberg, Germany.

OSV20. E. Orsini, N. P. Smart, and F. Vercauteren. Overdrive2k: Efficient secure MPC over Z2k from somewhat
homomorphic encryption. In S. Jarecki, editor, Topics in Cryptology – CT-RSA 2020, volume 12006 of
Lecture Notes in Computer Science, pages 254–283, San Francisco, CA, USA, Feb. 24–28, 2020. Springer,
Heidelberg, Germany.

QBC13. G. Quintin, M. Barbier, and C. Chabot. On generalized reed-solomon codes over commutative and non-
commutative rings. IEEE Trans. Inf. Theory, 59(9):5882–5897, 2013.

SJK+17. E. Syta, P. Jovanovic, E. Kokoris-Kogias, N. Gailly, L. Gasser, I. Khoffi, M. J. Fischer, and B. Ford.
Scalable bias-resistant distributed randomness. In 2017 IEEE Symposium on Security and Privacy, pages
444–460, San Jose, CA, USA, May 22–26, 2017. IEEE Computer Society Press.

YLF+21. T. Yurek, L. Luo, J. Fairoze, A. Kate, and A. Miller. hbACSS: How to robustly share many secrets.
Cryptology ePrint Archive, Report 2021/159, 2021. https://eprint.iacr.org/2021/159.

37

https://eprint.iacr.org/2021/777
https://eprint.iacr.org/2022/052
https://eprint.iacr.org/2022/052
https://eprint.iacr.org/2022/506
https://eprint.iacr.org/2021/159

YPA+21. L. Yang, S. J. Park, M. Alizadeh, S. Kannan, and D. Tse. Dispersedledger: High-throughput byzantine
consensus on variable bandwidth networks. CoRR, abs/2110.04371, 2021, 2110.04371. URL https:

//arxiv.org/abs/2110.04371.

38

http://arxiv.org/abs/2110.04371
https://arxiv.org/abs/2110.04371
https://arxiv.org/abs/2110.04371

	Lightweight Asynchronous Verifiable Secret Sharing with Optimal Resilience
	Introduction
	Information Theoretic vs Computational Security
	The space in between: ``lightweight'' cryptography
	Fields vs Rings
	Application to AMPC

	Polynomial interpolation, Reed-Solomon codes, and secret sharing
	Polynomial interpolation
	Reed-Solomon codes
	Asynchronous verifiable secret sharing
	Higher-level secret sharing interfaces
	The number of roots of a polynomial

	Subprotocols
	Random Beacon
	Reliable broadcast
	Simple Asynchronous Agreement
	Secure Message Distribution

	Building Secure Message Distribution
	AVID: Asynchronous Verifiable Information Dispersal
	Reliable Message Distribution
	Secure Key Distribution
	Building Secure Message Distribution

	Our AVSS protocols
	Security analysis
	Communication Complexity
	The Happy Path.
	Finite Field Case.
	Galois Ring Case.
	The Unhappy Path.

	Using a Random Oracle instead of a Random Beacon

	Restricting the secrets to a subring
	Auxiliary rings
	Two special cases
	The protocol
	Security analysis
	Communication complexity
	Setting k':-1.2mu=k.
	Setting R:-1.2mu=1.

	Using a Random Oracle instead of a Random Beacon

