13,781 research outputs found

    Polar cap observations of thermospheric winds and temperatures at Sondre Stromfjord, Greenland

    Get PDF
    An agreement of averaged temperatures with mass spectrometer incoherent scatter radar looked reasonable for several nights, but for many nights there are differences: (1) midnight period of cooling, and (2) temperature increases associated with overhead crossings of the auroral belt. The observed rise of the temperature before dawn in conjunction with the high 6300A intensities suggests a connection between the two effects: soft particle precipitation most likely candidate but frictional heating perhaps also a possibility. A comparison with the thermospheric general circulation model calculations also needed. The technique for formulating neutral wind vectors performs well in most cases. The observed patterns show evidence for abatement in the midnight sector in the meridional wind component at the separatix between the two cells with a frequency of the order of 20 to 25%, also observed in radar observations at Sondre Stromfjord. The observed patterns for magnetically quiet conditions show flow characteristic of the auroral belt, westward in evening followed by the midnight surge. The observed patterns for active conditions show dominance either by the evening cell or the morning cell, but most often the former

    Dynamic Arrival Rate Estimation for Campus Mobility on Demand Network Graphs

    Full text link
    Mobility On Demand (MOD) systems are revolutionizing transportation in urban settings by improving vehicle utilization and reducing parking congestion. A key factor in the success of an MOD system is the ability to measure and respond to real-time customer arrival data. Real time traffic arrival rate data is traditionally difficult to obtain due to the need to install fixed sensors throughout the MOD network. This paper presents a framework for measuring pedestrian traffic arrival rates using sensors onboard the vehicles that make up the MOD fleet. A novel distributed fusion algorithm is presented which combines onboard LIDAR and camera sensor measurements to detect trajectories of pedestrians with a 90% detection hit rate with 1.5 false positives per minute. A novel moving observer method is introduced to estimate pedestrian arrival rates from pedestrian trajectories collected from mobile sensors. The moving observer method is evaluated in both simulation and hardware and is shown to achieve arrival rate estimates comparable to those that would be obtained with multiple stationary sensors.Comment: Appears in 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). http://ieeexplore.ieee.org/abstract/document/7759357

    Quantum interference by two temporally distinguishable pulses

    Full text link
    We report a two-photon interference effect, in which the entangled photon pairs are generated from two laser pulses well-separated in time. In a single pump pulse case, interference effects did not occur in our experimental scheme. However, by introducing a second pump pulse delayed in time, quantum interference was then observed. The visibility of the interference fringes shows dependence on the delay time between two laser pulses. The results are explained in terms of indistinguishability of biphoton amplitudes which originated from two temporally separated laser pulses.Comment: two-column, 4pages, submitted to PRA, minor change

    Dyon Spectrum in CHL Models

    Get PDF
    We propose a formula for the degeneracy of quarter BPS dyons in a class of CHL models. The formula uses a modular form of a subgroup of the genus two modular group Sp(2,Z). Our proposal is S-duality invariant and reproduces correctly the entropy of a dyonic black hole to first non-leading order for large values of the charges.Comment: LaTeX file, 38 pages, minor changes in section 3.3(v2), minor changes in introduction, appendix A and C(v3

    GRID3D-v2: An updated version of the GRID2D/3D computer program for generating grid systems in complex-shaped three-dimensional spatial domains

    Get PDF
    In order to generate good quality systems for complicated three-dimensional spatial domains, the grid-generation method used must be able to exert rather precise controls over grid-point distributions. Several techniques are presented that enhance control of grid-point distribution for a class of algebraic grid-generation methods known as the two-, four-, and six-boundary methods. These techniques include variable stretching functions from bilinear interpolation, interpolating functions based on tension splines, and normalized K-factors. The techniques developed in this study were incorporated into a new version of GRID3D called GRID3D-v2. The usefulness of GRID3D-v2 was demonstrated by using it to generate a three-dimensional grid system in the coolent passage of a radial turbine blade with serpentine channels and pin fins

    Visualizing Quantum Well State Perturbations of Metallic Thin Films near Stacking Fault Defects

    Full text link
    We demonstrate that quantum well states (QWS) of thin Pb films are highly perturbed within the proximity of intrinsic film defects. Scanning Tunneling Spectroscopy (STM/STS) measurements indicate that the energy of these states have a strong distance dependence within 4 nm of the defect with the strongest energetic fluctuations equaling up to 100 meV. These localized perturbations show large spatially-dependent asymmetries in the LDOS around the defect site for each corresponding quantum well state. These energetic fluctuations can be described by a simple model which accounts for fluctuations in the confinement potential induced by topographic changes.Comment: Updated Versio

    Pseudomoduli Dark Matter

    Full text link
    We point out that pseudomoduli -- tree-level flat directions that often accompany dynamical supersymmetry breaking -- can be natural candidates for TeV-scale dark matter in models of gauge mediation. The idea is general and can be applied to different dark matter scenarios, including (but not limited to) those of potential relevance to recent cosmic ray anomalies. We describe the requirements for a viable model of pseudomoduli dark matter, and we analyze two example models to illustrate the general mechanism -- one where the pseudomoduli carry Higgsino-like quantum numbers, and another where they are SM singlets but are charged under a hidden-sector U(1)U(1)' gauge group.Comment: 20 pages, refs adde

    Simulation of valveless micropump and mode analysis

    Get PDF
    In this work, a 3-D simulation is performed to study for the solid-fluid coupling effect driven by piezoelectric materials and utilizes asymmetric obstacles to control the flow direction. The result of simulation is also verified. For a micropump, it is crucial to find the optimal working frequency which produce maximum net flow rate. The PZT plate vibrates under the first mode, which is symmetric. Adjusting the working frequency, the maximum flow rate can be obtained. For the micrpump we studied, the optimal working frequency is 3.2K Hz. At higher working frequency, say 20K Hz, the fluid-solid membrane may come out a intermediate mode, which is different from the first mode and the second mode. It is observed that the center of the mode drifts. Meanwhile, the result shows that a phase shift lagging when the excitation force exists in the vibration response. Finally, at even higher working frequency, say 30K Hz, a second vibration mode is observed.Comment: Submitted on behalf of EDA Publishing Association (http://irevues.inist.fr/EDA-Publishing
    corecore