45 research outputs found

    A Brief Overview on Ferrite (Fe3O4) Based Polymeric Nanocomposites: Recent Developments and Challenges

    Get PDF
    In this article, we have mainly discussed about ferrite (Fe3O4) and its polymer based nanocomposites. Ferrite particles have become an important research material because of their vast applications in the field of biotechnology, magnetic resonance imaging (MRI), and data storage. It has been observed that ferrite Fe3O4 particles show best performance for size less than 10-30 nm. This happens due to the super paramagnetic nature of such particles. In super paramagnetic range these particles exhibit zero remanence or coercivity. Therefore, various properties of ferrite (Fe3O4) nanoparticles and its polymer nanocomposites are very much dependent on the size, and distribution of the particles in the polymeric matrix. Moreover, it has been also observed that the shape of the nanocrystals plays important role in the determination of their fundamental properties. These particles show instability over longer times due to the formation of agglomerates generated by high surface energies. Therefore, protection strategies such as grafting and coatings with silica/carbon or polymers have been developed to stabilize them chemically. Recently, silylation technique is mainly used for the modification of nanoparticles. Experimentally, it has been observed that nanocomposites composed of polymer matrices and ferrite showed substantial improvements in stiffness, fracture toughness, sensing ability (magnetic as well as electric), impact energy absorption, and electro-catalytic activities to bio-species

    Therapeutic Intervention Using Autologous Exosomes for Treatment of Early-Stage Pancreatic Cancer

    Get PDF
    Background: Pancreatic cancer (PanCa) is the third deadliest cancer in United States with a poor survival rate. Despite extensive research efforts, there is not any substantial progress in cancer therapeutics; major challenges lie with inherent drug toxicity, ineffectiveness, and resistance due to impediments against intracellular drug delivery. From a therapeutic delivery standpoint, novel delivery vehicles are required that are both biocompatible and non-immunogenic for a patient in order to maximize the chances of cure. This is possible by utilizing an autologous biological material, which can be applied as a personalized medicine to match the individual circumstances and molecular profile of the patient. One such approach has been optimized in our lab, which utilizes exosomes from the matched tumor adjacent normal (NAT) area following surgical resection. Using exosomes as a scaffold, our objective is to deliver therapeutics safely and effectively to the patient tumor site. Results: NAT derived exosomes showed effective size and zeta potential (size: 44.12 ± 0.89; Zeta potential: -14.9 mV), which is ideal for drug delivery purposes. The purification of exosomes was confirmed using proteins isolated from exosomes through Western blotting for expression of exosomal markers, such as CD63 expression. Immunofluorescence for CD63 expression confirmed the efficient delivery of exosomes in PanCa cells. Our results indicated high drug loading capacity of NAT derived exosomes as demonstrated using drug, Ormeloxifene (ORM) though UPLC. Exo-ORM treatment efficiently delivered ORM into the cancer cells and inhibited the cancer cell characteristics, such as, proliferation compared with ORM alone. Additionally, NAT derived exosomes showed enhanced expression of tumor suppressor microRNA, miR-145, suggestive of their therapeutic importance. We observed restoration of lost miR-145 levels in PanCa cells on incubation with NAT derived exosomes for 48hrs. This further indicates their relevance for their utilization in the development of an anti-cancer therapy. Conclusion: Our observations offer importance of the utilization of NAT derived exosomes for personalized medicine as a therapeutic delivery vehicle in PanCa

    Cold atmospheric plasma induces ATP-dependent endocytosis of nanoparticles and synergistic U373MG cancer cell death

    Get PDF
    Gold nanoparticles (AuNP) have potential as both diagnostic and therapeutic vehicles. However, selective targeting and uptake in cancer cells remains challenging. Cold atmospheric plasma (CAP) can be combined with AuNP to achieve synergistic anti-cancer cytotoxicity. To explore synergistic mechanisms, we demonstrate both rate of AuNP uptake and total amount accumulated in U373MG Glioblastoma multiforme (GBM) cells are significantly increased when exposed to 75 kV CAP generated by dielectric barrier discharge. No significant changes in the physical parameters of AuNP were caused by CAP but active transport mechanisms were stimulated in cells. Unlike many other biological effects of CAP, long-lived reactive species were not involved, and plasma-activated liquids did not replicate the effect. Chemical effects induced by direct and indirect exposure to CAP appears the dominant mediator of enhanced uptake. Transient physical alterations of membrane integrity played a minor role. 3D-reconstruction of deconvoluted confocal images confirmed AuNP accumulation in lysosomes and other acidic vesicles, which will be useful for future drug delivery and diagnostic strategies. Toxicity of AuNP significantly increased by 25-fold when combined with CAP. Our data indicate that direct exposure to CAP activates AuNP-dependent cytotoxicity by increasing AuNP endocytosis and trafficking to lysosomes in U373MG cells
    corecore