236 research outputs found

    Intrinsically biased electrocapacitive catalysis

    Get PDF
    We propose the application of the contact potential from metal-metal junctions or the built-in potential of semiconductor p-np-n junctions to induce or catalyze chemical reactions. Free of external sources, this intrinsic potential across microscale and nanoscale vacuum gaps establishes electric fields in excess of 10^7V/m. The electrostatic potential energy of these fields can be converted into useful chemical energy. As an example, we focus on the production of superthermal gas ions to drive reactions. Analysis indicates that this intrinsically biased electrocapacitive catalysis can achieve locally directed ion energies up to a few electron volts and local gas temperatureboosts in excess of 10^4K. Practical considerations for implementation and experimental tests are considered

    Perfect coupling of light to surface plasmons with ultra-narrow linewidths

    Full text link
    We examine the coupling of electromagnetic waves incident normal to a thin silver film that forms an oscillatory grating embedded between two otherwise uniform, semi-infinite half spaces. Two grating structures are considered, in one of which the mid point of the Ag film remains fixed whereas the thickness varies sinusoidally, while in the other the mid point oscillates sinusoidally whereas the film thicknesses remains fixed. On reducing the light wavelength from the long wavelength limit, we encounter signatures in the transmission, T, and reflection, R, coefficients associated with: i) the short-range surface plasmon mode, ii) the long-range surface plasmon mode, and iii) electromagnetic diffraction tangent to the grating. The first two features can be regarded as generalized (plasmon) Wood's anomalies whereas the third is the first-order conventional (electromagnetic) Wood's anomaly. The energy density at the film surface is enhanced for wavelengths corresponding to these three anomalies, particularly for the long range plasmon mode in thin films. When exciting the silver film with a pair of waves incident from opposite directions, we find that by adjusting the grating oscillation amplitude and fixing the relative phase of the incoming waves to be even or odd, T+R can be made to vanish for one or the other of the plasmon modes; this corresponds to perfect coupling (impedance matching in the language of electrical engineering) between the incoming light and these modes.Comment: 13 pages, 5 figures. accepted J. Chem. Phy

    Coherently Controlled Nanoscale Molecular Deposition

    Full text link
    Quantum interference effects are shown to provide a means of controlling and enhancing the focusing a collimated neutral molecular beam onto a surface. The nature of the aperiodic pattern formed can be altered by varying laser field characteristics and the system geometry.Comment: 13 pages (inculding 4 figures), LaTeX (Phys. Rev. Lett., 2000, in Press

    Utilization Of Goose Muscle In The Preparation Of Meat Rolls

    Get PDF
    South Dakota produces more domestic geese than any other state in the United States. Marketing of geese is decreasing due to importation of Canadian geese and a decreasing consumer demand. Research is needed to increase goose meat consumption. A large percentage of turkey meat is sold as retail convenience products such as rolls, yet there are virtually no comparable products on the market from goose meat. This study was undertaken to develop and evaluate an acceptable goose roll

    Tunneling Ionization Rates from Arbitrary Potential Wells

    Get PDF
    We present a practical numerical technique for calculating tunneling ionization rates from arbitrary 1-D potential wells in the presence of a linear external potential by determining the widths of the resonances in the spectral density, rho(E), adiabatically connected to the field-free bound states. While this technique applies to more general external potentials, we focus on the ionization of electrons from atoms and molecules by DC electric fields, as this has an important and immediate impact on the understanding of the multiphoton ionization of molecules in strong laser fields.Comment: 13 pages, 7 figures, LaTe

    Analysis of surface waves generated on subwavelength-structured silver films

    Get PDF
    Using transmission electron microscopy (TEM) to analyse the physical-chemical surface properties of subwavlength structured silver films and finite-difference time-domain (FDTD) numerical simulations of the optical response of these structures to plane-wave excitation, we report on the origin and nature of the persistent surface waves generated by a single slit-groove motif and recently measured by far-field optical interferometry. The surface analysis shows that the silver films are free of detectable oxide or sulfide contaminants, and the numerical simulations show very good agreement with the results previously reported.Comment: 9 Figure

    Nonadiabatic orientation, toroidal current, and induced magnetic field in BeO molecules

    Get PDF
    It is predicted that oriented BeO molecules would give rise to unprecedentedly strong, unidirectional electric ring current and an associated magnetic field upon excitation by a right or left circularly polarized laser pulse into the first excited degenerate singlet state. The strong toroidal electric ring current of this state is dominated by the ring current of the 1π± orbital about the molecular axis. Our predictions are based on the analysis of the orbital composition of the states involved and are substantiated by high level electronic structure calculations and wavepacket simulations of the laser-driven orientation and excitation [email protected]

    Theory of x-ray absorption by laser-aligned symmetric-top molecules

    Full text link
    We devise a theory of x-ray absorption by symmetric-top molecules which are aligned by an intense optical laser. Initially, the density matrix of the system is composed of the electronic ground state of the molecules and a thermal ensemble of rigid-rotor eigenstates. We formulate equations of motion of the two-color (laser plus x rays) rotational-electronic problem. The interaction with the laser is assumed to be nonresonant; it is described by an electric dipole polarizability tensor. X-ray absorption is approximated as a one-photon process. It is shown that the equations can be separated such that the interaction with the laser can be treated independently of the x rays. The laser-only density matrix is propagated numerically. After each time step, the x-ray absorption is calculated. We apply our theory to study adiabatic alignment of bromine molecules (Br2). The required dynamic polarizabilities are determined using the ab initio linear response methods coupled-cluster singles (CCS), second-order approximate coupled-cluster singles and doubles (CC2), and coupled-cluster singles and doubles (CCSD). For the description of x-ray absorption on the sigma_g 1s --> sigma_u 4p resonance, a parameter-free two-level model is used for the electronic structure of the molecules. Our theory opens up novel perspectives for the quantum control of x-ray radiation.Comment: 14 pages, 4 figures, 1 table, RevTeX4, revise
    • …
    corecore