20 research outputs found

    Heritability of chronic venous disease

    Get PDF
    Varicose veins without skin changes have a prevalence of approximately 20% in Northern and Western Europe whereas advanced chronic venous insufficiency affects about 3% of the population. Genetic risk factors are thought to play an important role in the aetiology of both these chronic venous diseases (CVD). We evaluated the relative genetic and environmental impact upon CVD risk by estimating the heritability of the disease in 4,033 nuclear families, comprising 16,434 individuals from all over Germany. Upon clinical examination, patients were classified according to the CEAP guidelines as either C2 (simple varicose veins), C3 (oedema), C4 (skin changes without ulceration), C5 (healed ulceration), or C6 (active ulcers). The narrow-sense heritability (h2) of CVD equals 17.3% (standard error 2.5%, likelihood ratio test P = 1.4 × 10−13). The proportion of disease risk attributable to age (at ascertainment) and sex, the two main risk factors for CVD, was estimated as 10.7% (Kullback–Leibler deviance R2). The heritability of CVD is high, thereby suggesting a notable genetic component in the aetiology of the disease. Systematic population-based searches for CVD susceptibility genes are therefore warranted

    Pelvic organ prolapse and collagen-associated disorders

    Get PDF
    Contains fulltext : 109010.pdf (publisher's version ) (Open Access)INTRODUCTION AND HYPOTHESIS: Pelvic organ prolapse (POP) and other disorders, such as varicose veins and joint hypermobility, have been associated with changes in collagen strength and metabolism. We hypothesized that these various disorders were more prevalent in both POP patients and their family members. METHODS: In this study, the prevalence of various collagen-associated disorders, including POP, was compared between POP patients (n = 110) and control patients (n = 100) and their first and second degree family members. RESULTS: POP patients reported a higher prevalence of varicose veins, joint hypermobility and rectal prolapse and were more likely to have family members with POP as compared to the control group (p < 0.01). In contrast, the family members of the POP group did not report a higher prevalence of collagen-associated disorders compared to the family members of the control group (p = 0.82). CONCLUSIONS: POP and other collagen-associated disorders may have a common aetiology, originating at the molecular level of the collagens.1 maart 201

    Venous endothelial injury in central nervous system diseases

    Full text link

    Vascular dysfunctions in the isolated aorta of double-transgenic hypertensive mice developing aortic aneurysm

    No full text
    Angiotensin-II and oxidative stress are involved in the genesis of aortic aneurysms, a phenomenon exacerbated by endothelial nitric oxide synthase (eNOS) deletion or uncoupling. The purpose of this work was to study the endothelial function in wild-type C57BL/6 (BL) and transgenic mice expressing the h-angiotensinogen and h-renin genes (AR) subjected to either a control, or a high-salt diet plus a treatment with a NO-synthase inhibitor, N-ω-nitro-L-arginine-methyl-ester (L-NAME; BLSL and ARSL). BLSL showed a moderate increase in blood pressure, while ARSL became severely hypertensive. Seventy-five percent of ARSL developed aortic aneurysms, characterized by major histo-morphological changes and associated with an increase in NADP(H) oxidase-2 (NOX2) expression. Contractile responses (KCl, norepinephrine, U-46619) were similar in the four groups of mice, and relaxations were not affected in BLSL and AR. However, in ARSL, endothelium-dependent relaxations (acetylcholine, UK-14304) were significantly reduced, and this dysfunction was similar in aortae without or with aneurysms. The endothelial impairment was unaffected by catalase, superoxide-dismutase mimetic, radical scavengers, cyclooxygenase inhibition, or TP-receptor blockade and could not be attributed to sGC oxidation. Thus, ARSL is a severe hypertension model developing aortic aneurysm. A vascular dysfunction, involving both endothelial (reduced role of NO) and smooth muscle cells, precedes aneurysms formation and, paradoxically, does not appear to involve oxidative stress
    corecore