615 research outputs found
Universality classes of three-dimensional -vector model
We study the conditions under which the critical behavior of the
three-dimensional -vector model does not belong to the spherically
symmetrical universality class. In the calculations we rely on the
field-theoretical renormalization group approach in different regularization
schemes adjusted by resummation and extended analysis of the series for
renormalization-group functions which are known for the model in high orders of
perturbation theory. The phase diagram of the three-dimensional -vector
model is built marking out domains in the -plane where the model belongs to
a given universality class.Comment: 9 pages, 1 figur
Two-dimensional SIR epidemics with long range infection
We extend a recent study of susceptible-infected-removed epidemic processes
with long range infection (referred to as I in the following) from
1-dimensional lattices to lattices in two dimensions. As in I we use hashing to
simulate very large lattices for which finite size effects can be neglected, in
spite of the assumed power law for the
probability that a site can infect another site a distance vector
apart. As in I we present detailed results for the critical case, for the
supercritical case with , and for the supercritical case with . For the latter we verify the stretched exponential growth of the
infected cluster with time predicted by M. Biskup. For we find
generic power laws with dependent exponents in the supercritical
phase, but no Kosterlitz-Thouless (KT) like critical point as in 1-d. Instead
of diverging exponentially with the distance from the critical point, the
correlation length increases with an inverse power, as in an ordinary critical
point. Finally we study the dependence of the critical exponents on in
the regime , and compare with field theoretic predictions. In
particular we discuss in detail whether the critical behavior for
slightly less than 2 is in the short range universality class, as conjectured
recently by F. Linder {\it et al.}. As in I we also consider a modified version
of the model where only some of the contacts are long range, the others being
between nearest neighbors. If the number of the latter reaches the percolation
threshold, the critical behavior is changed but the supercritical behavior
stays qualitatively the same.Comment: 14 pages, including 29 figure
Ferromagnetic phase transition in a Heisenberg fluid: Monte Carlo simulations and Fisher corrections to scaling
The magnetic phase transition in a Heisenberg fluid is studied by means of
the finite size scaling (FSS) technique. We find that even for larger systems,
considered in an ensemble with fixed density, the critical exponents show
deviations from the expected lattice values similar to those obtained
previously. This puzzle is clarified by proving the importance of the leading
correction to the scaling that appears due to Fisher renormalization with the
critical exponent equal to the absolute value of the specific heat exponent
. The appearance of such new corrections to scaling is a general
feature of systems with constraints.Comment: 12 pages, 2 figures; submitted to Phys. Rev. Let
Flow Equations for U_k and Z_k
By considering the gradient expansion for the wilsonian effective action S_k
of a single component scalar field theory truncated to the first two terms, the
potential U_k and the kinetic term Z_k, I show that the recent claim that
different expansion of the fluctuation determinant give rise to different
renormalization group equations for Z_k is incorrect. The correct procedure to
derive this equation is presented and the set of coupled differential equations
for U_k and Z_k is definitely established.Comment: 5 page
Random Walks with Long-Range Self-Repulsion on Proper Time
We introduce a model of self-repelling random walks where the short-range
interaction between two elements of the chain decreases as a power of the
difference in proper time. Analytic results on the exponent are obtained.
They are in good agreement with Monte Carlo simulations in two dimensions. A
numerical study of the scaling functions and of the efficiency of the algorithm
is also presented.Comment: 25 pages latex, 4 postscript figures, uses epsf.sty (all included)
IFUP-Th 13/92 and SNS 14/9
Pressure Effects and Large Polarons in Layered MgB_2 Superconductor
We consider the dependence of the MgB_2 superconducting critical temperature
on the pressure. Our model exploits the influence of the large polarons on the
band structure of the layered MgB_2 superconductor. Namely, the hole
Pekar-Froehlich polarons form quasi two-dimensional potential wells in the
boron plane which shift the positions of the sigma- and pi-bands. This energy
shift depends on the pressure and the Cooper pairing of the correlated
sigma-electrons happens inside polaron wells. The results obtained are as
follows: dT_c/dp = -\alpha (5.2 \pm 0.9) K/GPa or dT_c/dp = -\alpha (6.9\pm
1.1) K/GPa for a different choice of the Grueneisen parameter. Being compared
with known experimental data they give us a resonable interval for the value of
the Froehlich electron-phonon coupling constant: \alpha = 0.15 - 0.45.Comment: 6 pages, 1 fig, LaTeX, subm. to Phys. Rev.
Driven diffusive system with non-local perturbations
We investigate the impact of non-local perturbations on driven diffusive
systems. Two different problems are considered here. In one case, we introduce
a non-local particle conservation along the direction of the drive and in
another case, we incorporate a long-range temporal correlation in the noise
present in the equation of motion. The effect of these perturbations on the
anisotropy exponent or on the scaling of the two-point correlation function is
studied using renormalization group analysis.Comment: 11 pages, 2 figure
Non-Fermi liquid behavior from two-dimensional antiferromagnetic fluctuations: a renormalization-group and large-N analysis
We analyze the Hertz-Moriya-Millis theory of an antiferromagnetic quantum
critical point, in the marginal case of two dimensions (d=2,z=2). Up to
next-to-leading order in the number of components (N) of the field, we find
that logarithmic corrections do not lead to an enhancement of the Landau
damping. This is in agreement with a renormalization-group analysis, for
arbitrary N. Hence, the logarithmic effects are unable to account for the
behavior reportedly observed in inelastic neutron scattering experiments on
CeCu_{6-x}Au_x. We also examine the extended dynamical mean-field treatment
(local approximation) of this theory, and find that only subdominant
corrections to the Landau damping are obtained within this approximation, in
contrast to recent claims.Comment: 15 pages, 8 figure
- âŠ