5,274 research outputs found
Spacetime Defects: von K\'arm\'an vortex street like configurations
A special arrangement of spinning strings with dislocations similar to a von
K\'arm\'an vortex street is studied. We numerically solve the geodesic
equations for the special case of a test particle moving along twoinfinite rows
of pure dislocations and also discuss the case of pure spinning defects.Comment: 9 pages, 2figures, CQG in pres
Perturbation Theory for Antisymmetric Tensor Fields in Four Dimensions
Perturbation theory for a class of topological field theories containing
antisymmetric tensor fields is considered. These models are characterized by a
supersymmetric structure which allows to establish their perturbative
finiteness.Comment: 23 page
A new orthogonalization procedure with an extremal property
Various methods of constructing an orthonomal set out of a given set of
linearly independent vectors are discussed. Particular attention is paid to the
Gram-Schmidt and the Schweinler-Wigner orthogonalization procedures. A new
orthogonalization procedure which, like the Schweinler- Wigner procedure, is
democratic and is endowed with an extremal property is suggested.Comment: 7 pages, latex, no figures, To appear in J. Phys
Instanton Floer homology and the Alexander polynomial
The instanton Floer homology of a knot in the three-sphere is a vector space
with a canonical mod 2 grading. It carries a distinguished endomorphism of even
degree,arising from the 2-dimensional homology class represented by a Seifert
surface. The Floer homology decomposes as a direct sum of the generalized
eigenspaces of this endomorphism. We show that the Euler characteristics of
these generalized eigenspaces are the coefficients of the Alexander polynomial
of the knot. Among other applications, we deduce that instanton homology
detects fibered knots.Comment: 25 pages, 6 figures. Revised version, correcting errors concerning
mod 2 gradings in the skein sequenc
Cosmic censorship and spherical gravitational collapse with tangential pressure
We study the spherical gravitational collapse of a compact object under the
approximation that the radial pressure is identically zero, and the tangential
pressure is related to the density by a linear equation of state. It turns out
that the Einstein equations can be reduced to the solution of an integral for
the evolution of the area radius. We show that for positive pressure there is a
finite region near the center which necessarily expands outwards, if collapse
begins from rest. This region could be surrounded by an inward moving one which
could collapse to a singularity - any such singularity will necessarily be
covered by a horizon. For negative pressure the entire object collapses
inwards, but any singularities that could arise are not naked. Thus the nature
of the evolution is very different from that of dust, even when the ratio of
pressure to density is infinitesimally small.Comment: 16 pages, Latex file, two figures, uses epsf.st
On the gravitational field of static and stationary axial symmetric bodies with multi-polar structure
We give a physical interpretation to the multi-polar Erez-Rozen-Quevedo
solution of the Einstein Equations in terms of bars. We find that each
multi-pole correspond to the Newtonian potential of a bar with linear density
proportional to a Legendre Polynomial. We use this fact to find an integral
representation of the function. These integral representations are
used in the context of the inverse scattering method to find solutions
associated to one or more rotating bodies each one with their own multi-polar
structure.Comment: To be published in Classical and Quantum Gravit
Primordial Entropy Production and Lambda-driven Inflation from Quantum Einstein Gravity
We review recent work on renormalization group (RG) improved cosmologies
based upon a RG trajectory of Quantum Einstein Gravity (QEG) with realistic
parameter values. In particular we argue that QEG effects can account for the
entire entropy of the present Universe in the massless sector and give rise to
a phase of inflationary expansion. This phase is a pure quantum effect and
requires no classical inflaton field.Comment: 12 pages, 4 figures, IGCG-07 Pun
- …