1,345 research outputs found
CAUSES OF DISPOSAL OF MURRAH BUFFALO FROM AN ORGANISED HERD
The present study comprised of 602 disposal records of adult Murrah buffaloes , spread over a period of 16 years
from 1985 to 2000 at NDRI, Karnal, Haryana. Analysed data showed that the reproductive problems (38.62),
low milk production (24.01) and udder problems (22.76) were the three major reasons of culling in adult Murrah
buffaloes . The culling of cows due to involuntary reason (reproductive problems, udder problems and locomotive
disorders) accounted for nearly 63.68 percent of total culling in Murrah buffaloes in the NDRI herd. The data
revealed that maximum mortality occurred due to digestive problems accounting for 30.89 percent followed by
cardio-vascular problems (26.02 percent), respiratory problems (21.14 percent), parasitic problems (8.13 percent)
and uro-genital problems (5.69 percent). The results showed that there is a scope for further improvement in
production and reproductive efficiency through better monitoring of reproduction and udder health status of the
buffaloes. The high involuntary culling rate not only makes the dairy enterprises economically less profitable but
also reduces the genetic improvement by lowering the selection differential for milk production
Near-infrared photoabsorption by C(60) dianions in a storage ring
We present a detailed study of the electronic structure and the stability of C(60) dianions in the gas phase. Monoanions were extracted from a plasma source and converted to dianions by electron transfer in a Na vapor cell. The dianions were then stored in an electrostatic ring, and their near-infrared absorption spectrum was measured by observation of laser induced electron detachment. From the time dependence of the detachment after photon absorption, we conclude that the reaction has contributions from both direct electron tunneling to the continuum and vibrationally assisted tunneling after internal conversion. This implies that the height of the Coulomb barrier confining the attached electrons is at least similar to 1.5 eV. For C(60)(2-) ions in solution electron spin resonance measurements have indicated a singlet ground state, and from the similarity of the absorption spectra we conclude that also the ground state of isolated C(60)(2-) ions is singlet. The observed spectrum corresponds to an electronic transition from a t(1u) lowest unoccupied molecular orbital (LUMO) of C(60) to the t(1g) LUMO+1 level. The electronic levels of the dianion are split due to Jahn-Teller coupling to quadrupole deformations of the molecule, and a main absorption band at 10723 cm(-1) corresponds to a transition between the Jahn-Teller ground states. Also transitions from pseudorotational states with 200 cm(-1) and (probably) 420 cm(-1) excitation are observed. We argue that a very broad absorption band from about 11 500 cm(-1) to 13 500 cm(-1) consists of transitions to so-called cone states, which are Jahn-Teller states on a higher potential-energy surface, stabilized by a pseudorotational angular momentum barrier. A previously observed, high-lying absorption band for C(60)(-) may also be a transition to a cone state
Response of a Hexagonal Granular Packing under a Localized External Force: Exact Results
We study the response of a two-dimensional hexagonal packing of massless,
rigid, frictionless spherical grains due to a vertically downward point force
on a single grain at the top layer. We use a statistical approach, where each
mechanically stable configuration of contact forces is equally likely. We show
that this problem is equivalent to a correlated -model. We find that the
response is double-peaked, where the two peaks, sharp and single-grain diameter
wide, lie on the two downward lattice directions emanating from the point of
the application of the external force. For systems of finite size, the
magnitude of these peaks decreases towards the bottom of the packing, while
progressively a broader, central maximum appears between the peaks. The
response behaviour displays a remarkable scaling behaviour with system size
: while the response in the bulk of the packing scales as , on
the boundary it is independent of , so that in the thermodynamic limit only
the peaks on the lattice directions persist. This qualitative behaviour is
extremely robust, as demonstrated by our simulation results with different
boundary conditions. We have obtained expressions of the response and higher
correlations for any system size in terms of integers corresponding to an
underlying discrete structure.Comment: Accepted for publication in JStat; 33 pages, 10 figures; Section 2.2
reorganized and rewritten; Details about the simulation procedure added in
Sec.3.1. ; A new section, summarizing the final results and the calculation
procedure adde
Sensitivity of the stress response function to packing preparation
A granular assembly composed of a collection of identical grains may pack
under different microscopic configurations with microscopic features that are
sensitive to the preparation history. A given configuration may also change in
response to external actions such as compression, shearing etc. We show using a
mechanical response function method developed experimentally and numerically,
that the macroscopic stress profiles are strongly dependent on these
preparation procedures. These results were obtained for both two and three
dimensions. The method reveals that, under a given preparation history, the
macroscopic symmetries of the granular material is affected and in most cases
significant departures from isotropy should be observed. This suggests a new
path toward a non-intrusive test of granular material constitutive properties.Comment: 15 pages, 11 figures, some numerical data corrected, to appear in J.
Phys. Cond. Mat. special issue on Granular Materials (M. Nicodemi Editor
Systematic Density Expansion of the Lyapunov Exponents for a Two-dimensional Random Lorentz Gas
We study the Lyapunov exponents of a two-dimensional, random Lorentz gas at
low density. The positive Lyapunov exponent may be obtained either by a direct
analysis of the dynamics, or by the use of kinetic theory methods. To leading
orders in the density of scatterers it is of the form
, where and are
known constants and is the number density of scatterers expressed
in dimensionless units. In this paper, we find that through order
, the positive Lyapunov exponent is of the form
. Explicit numerical values of the new constants
and are obtained by means of a systematic analysis. This takes into
account, up to , the effects of {\it all\/} possible
trajectories in two versions of the model; in one version overlapping scatterer
configurations are allowed and in the other they are not.Comment: 12 pages, 9 figures, minor changes in this version, to appear in J.
Stat. Phy
Master equation approach to the conjugate pairing rule of Lyapunov spectra for many-particle thermostatted systems
The master equation approach to Lyapunov spectra for many-particle systems is
applied to non-equilibrium thermostatted systems to discuss the conjugate
pairing rule. We consider iso-kinetic thermostatted systems with a shear flow
sustained by an external restriction, in which particle interactions are
expressed as a Gaussian white randomness. Positive Lyapunov exponents are
calculated by using the Fokker-Planck equation to describe the tangent vector
dynamics. We introduce another Fokker-Planck equation to describe the
time-reversed tangent vector dynamics, which allows us to calculate the
negative Lyapunov exponents. Using the Lyapunov exponents provided by these two
Fokker-Planck equations we show the conjugate pairing rule is satisfied for
thermostatted systems with a shear flow in the thermodynamic limit. We also
give an explicit form to connect the Lyapunov exponents with the
time-correlation of the interaction matrix in a thermostatted system with a
color field.Comment: 10 page
Lyapunov Exponent Pairing for a Thermostatted Hard-Sphere Gas under Shear in the Thermodynamic Limit
We demonstrate why for a sheared gas of hard spheres, described by the SLLOD
equations with an iso-kinetic Gaussian thermostat in between collisions,
deviations of the conjugate pairing rule for the Lyapunov spectrum are to be
expected, employing a previous result that for a large number of particles ,
the iso-kinetic Gaussian thermostat is equivalent to a constant friction
thermostat, up to fluctuations. We also show that these deviations
are at most of the order of the fourth power in the shear rate.Comment: 4 pages, to appear in Rapid Comm., Phys. Rev.
Mean first-passage times of non-Markovian random walkers in confinement
The first-passage time (FPT), defined as the time a random walker takes to
reach a target point in a confining domain, is a key quantity in the theory of
stochastic processes. Its importance comes from its crucial role to quantify
the efficiency of processes as varied as diffusion-limited reactions, target
search processes or spreading of diseases. Most methods to determine the FPT
properties in confined domains have been limited to Markovian (memoryless)
processes. However, as soon as the random walker interacts with its
environment, memory effects can not be neglected. Examples of non Markovian
dynamics include single-file diffusion in narrow channels or the motion of a
tracer particle either attached to a polymeric chain or diffusing in simple or
complex fluids such as nematics \cite{turiv2013effect}, dense soft colloids or
viscoelastic solution. Here, we introduce an analytical approach to calculate,
in the limit of a large confining volume, the mean FPT of a Gaussian
non-Markovian random walker to a target point. The non-Markovian features of
the dynamics are encompassed by determining the statistical properties of the
trajectory of the random walker in the future of the first-passage event, which
are shown to govern the FPT kinetics.This analysis is applicable to a broad
range of stochastic processes, possibly correlated at long-times. Our
theoretical predictions are confirmed by numerical simulations for several
examples of non-Markovian processes including the emblematic case of the
Fractional Brownian Motion in one or higher dimensions. These results show, on
the basis of Gaussian processes, the importance of memory effects in
first-passage statistics of non-Markovian random walkers in confinement.Comment: Submitted version. Supplementary Information can be found on the
Nature website :
http://www.nature.com/nature/journal/v534/n7607/full/nature18272.htm
Non-Markovian polymer reaction kinetics
Describing the kinetics of polymer reactions, such as the formation of loops
and hairpins in nucleic acids or polypeptides, is complicated by the structural
dynamics of their chains. Although both intramolecular reactions, such as
cyclization, and intermolecular reactions have been studied extensively, both
experimentally and theoretically, there is to date no exact explicit analytical
treatment of transport-limited polymer reaction kinetics, even in the case of
the simplest (Rouse) model of monomers connected by linear springs. We
introduce a new analytical approach to calculate the mean reaction time of
polymer reactions that encompasses the non-Markovian dynamics of monomer
motion. This requires that the conformational statistics of the polymer at the
very instant of reaction be determined, which provides, as a by-product, new
information on the reaction path. We show that the typical reactive
conformation of the polymer is more extended than the equilibrium conformation,
which leads to reaction times significantly shorter than predicted by the
existing classical Markovian theory.Comment: Main text (7 pages, 5 figures) + Supplemantary Information (13 pages,
2 figures
Necessity of 'two time zones: 1ST-I (UTC+5: 30 h) and 1ST-II (UTC+6: 30 h)' in India and its implementation
A strong demand of a separate time zone by northeast populace has been a matter of great debate for a very long period. However, no implementable solution to this genuine problem has yet been proposed. The CSIR-National Physical Laboratory, CSIR-NPL (the National Measurement Institute, NMI, of India and custodian of Indian Standard Time, 1ST) proposes an implementable solution that puts the country in two time zones: (1) IST-I (UTC + 5 : 30 h, represented by longitude passing through 82 degrees 33E) covering the regions falling between longitude 68 degrees 7 E and 89 degrees 52 E and (ii) IST-II (UTC + 6 : 30 h, represented by longitude passing through 97 degrees 30 E) encompassing the regions between 89 degrees 52 E and 97 degrees 25 E. The proposed demarcation line between IST-I and IST-II, falling at longitude 89 degrees 52 E, is derived from analyses of synchronizing the circadian clocks to normal office hours (9 : 00 a.m. to 5 : 30 p.m.). This demarcation line passes through the border of West Bengal and Assam and has a narrow spatial extension, which makes it easier to implement from the railways point of view. Once approved, the implementation would require establishment of a laboratory for 'Primary Time Ensemble - II' generating IST-II in any of the north-eastern states, which would be equivalent to the existing 'Primary Time Ensemble-I' at CSIR-NPL, New Delhi
- …