4,948 research outputs found
Dynamical transitions and sliding friction of the phase-field-crystal model with pinning
We study the nonlinear driven response and sliding friction behavior of the
phase-field-crystal (PFC) model with pinning including both thermal
fluctuations and inertial effects. The model provides a continuous description
of adsorbed layers on a substrate under the action of an external driving force
at finite temperatures, allowing for both elastic and plastic deformations. We
derive general stochastic dynamical equations for the particle and momentum
densities including both thermal fluctuations and inertial effects. The
resulting coupled equations for the PFC model are studied numerically. At
sufficiently low temperatures we find that the velocity response of an
initially pinned commensurate layer shows hysteresis with dynamical melting and
freezing transitions for increasing and decreasing applied forces at different
critical values. The main features of the nonlinear response in the PFC model
are similar to the results obtained previously with molecular dynamics
simulations of particle models for adsorbed layers.Comment: 7 pages, 8 figures, to appear in Physcial Review
DDFT calibration and investigation of an anisotropic phase-field crystal model
The anisotropic phase-field crystal model recently proposed and used by
Prieler et al. [J. Phys.: Condens. Matter 21, 464110 (2009)] is derived from
microscopic density functional theory for anisotropic particles with fixed
orientation. Further its morphology diagram is explored. In particular we
investigated the influence of anisotropy and undercooling on the process of
nucleation and microstructure formation from atomic to the microscale. To that
end numerical simulations were performed varying those dimensionless parameters
which represent anisotropy and undercooling in our anisotropic phase-field
crystal (APFC) model. The results from these numerical simulations are
summarized in terms of a morphology diagram of the stable state phase. These
stable phases are also investigated with respect to their kinetics and
characteristic morphological features.Comment: It contain 13 pages and total of 7 figure
Glassy phases and driven response of the phase-field-crystal model with random pinning
We study the structural correlations and the nonlinear response to a driving
force of a two-dimensional phase-field-crystal model with random pinning. The
model provides an effective continuous description of lattice systems in the
presence of disordered external pinning centers, allowing for both elastic and
plastic deformations. We find that the phase-field crystal with disorder
assumes an amorphous glassy ground state, with only short-ranged positional and
orientational correlations even in the limit of weak disorder. Under increasing
driving force, the pinned amorphous-glass phase evolves into a moving
plastic-flow phase and then finally a moving smectic phase. The transverse
response of the moving smectic phase shows a vanishing transverse critical
force for increasing system sizes
Evaluation of early and late presentation of patients with ocular mucous membrane pemphigoid to two major tertiary referral hospitals in the United Kingdom
PURPOSE: Ocular mucous membrane pemphigoid (OcMMP) is a sight-threatening autoimmune disease in which referral to specialists units for further management is a common practise. This study aims to describe referral patterns, disease phenotype and management strategies in patients who present with either early or established disease to two large tertiary care hospitals in the United Kingdom.\ud
\ud
PATIENTS AND METHODS: In all, 54 consecutive patients with a documented history of OcMMP were followed for 24 months. Two groups were defined: (i) early-onset disease (EOD:<3 years, n=26, 51 eyes) and (ii) established disease (EstD:>5 years, n=24, 48 eyes). Data were captured at first clinic visit, and at 12 and 24 months follow-up. Information regarding duration, activity and stage of disease, visual acuity (VA), therapeutic strategies and clinical outcome were analysed.\ud
\ud
RESULTS: Patients with EOD were younger and had more severe conjunctival inflammation (76% of inflamed eyes) than the EstD group, who had poorer VA (26.7%=VA<3/60, P<0.01) and more advanced disease. Although 40% of patients were on existing immunosuppression, 48% required initiation or switch to more potent immunotherapy. In all, 28% (14) were referred back to the originating hospitals for continued care. Although inflammation had resolved in 78% (60/77) at 12 months, persistence of inflammation and progression did not differ between the two phenotypes. Importantly, 42% demonstrated disease progression in the absence of clinically detectable inflammation.\ud
\ud
CONCLUSIONS: These data highlight that irrespective of OcMMP phenotype, initiation or escalation of potent immunosuppression is required at tertiary hospitals. Moreover, the conjunctival scarring progresses even when the eye remains clinically quiescent. Early referral to tertiary centres is recommended to optimise immunosuppression and limit long-term ocular damage.\ud
\u
Phase Diagram and Commensurate-Incommensurate Transitions in the Phase Field Crystal Model with an External Pinning Potential
We study the phase diagram and the commensurate-incommensurate transitions in
a phase field model of a two-dimensional crystal lattice in the presence of an
external pinning potential. The model allows for both elastic and plastic
deformations and provides a continuum description of lattice systems, such as
for adsorbed atomic layers or two-dimensional vortex lattices. Analytically, a
mode expansion analysis is used to determine the ground states and the
commensurate-incommensurate transitions in the model as a function of the
strength of the pinning potential and the lattice mismatch parameter. Numerical
minimization of the corresponding free energy shows good agreement with the
analytical predictions and provides details on the topological defects in the
transition region. We find that for small mismatch the transition is of
first-order, and it remains so for the largest values of mismatch studied here.
Our results are consistent with results of simulations for atomistic models of
adsorbed overlayers
Surface reconstruction of wear in carpets by using a wavelet edge detector
Carpet manufacturers have wear labels assigned to their products by human experts who evaluate carpet samples subjected to accelerated wear in a test device. There is considerable industrial and academic interest in going from human to automated evaluation, which should be less cumbersome and more objective. In this paper, we present image analysis research on videos of carpet surfaces scanned with a 3D laser. The purpose is obtaining good depth Images for an automated system that should have a high percentage of correct assessments for a wide variety of carpets. The innovation is the use of a wavelet edge detector to obtain a more continuously defined surface shape. The evaluation is based on how well the algorithms allow a good linear ranking and a good discriminance of consecutive wear labels. The results show an improved linear ranking for most carpet types, for two carpet types the results are quite significant
- âŠ